10£®ÔÚËıßÐÎABCDÖУ¬AC¡ÎBD£¬AB=13cm£¬AC=14cm£¬CD=15cm£¬BD=28cm£®ÔÚÖ±ÏßBDÉÏ£¬¶¯µãP´ÓBµã³ö·¢ÏòÓÒÔ˶¯£¬Í¬Ê±£¬ÁíÒ»¸ö¶¯µãQ´ÓDµã³ö·¢Ïò×óÔ˶¯£®
£¨1£©ÒÑÖª£º¶¯µãP¡¢QµÄËٶȷֱðÊÇ1cm/sºÍ2cm/s£®Çó£ºÔ˶¯¶à³¤Ê±¼äºó£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¿£¨Ð´³öÇó½â¹ý³Ì£©
£¨2£©ÈôÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬Çó£ºP¡¢QÁ½µãÔ˶¯ËÙ¶ÈÖ®±È£®£¨²»Ð´Çó½â¹ý³Ì£©VP£ºVQ=5£º9»ò19£º23£®
£¨3£©ÈôÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬Çó£ºP¡¢QÁ½µãÔ˶¯ËÙ¶ÈÖ®±È£®£¨²»Ð´Çó½â¹ý³Ì£¬½á¹û¿ÉÒÔ²»»¯¼ò£©VP£ºVQ=£¨5+2$\sqrt{13}$£©£º£¨9-2$\sqrt{13}$£©»òVP£ºVQ=£¨19+2$\sqrt{13}$£©£º£¨23-2$\sqrt{13}$£©£¬£®

·ÖÎö £¨1£©Èçͼ1ÖУ¬µ±AC=PQʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
£¨2£©Èçͼ2ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚF£¬·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¼´¿É£®
£¨3£©Èçͼ3ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚFµ±AP=AC=PQʱ£¬ËıßÐÎAPQCÊÇÁâÐΣ¬ÓÉ£¨2£©¿ÉÖª£¬AE=CD=15£¬AD=12£¬BD=5£¬·ÖÁ½ÖÖÇéÐÎÁгö·½³Ì½â¾ö£®

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬µ±AC=PQʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐÎ

ÓÉÌâÒ⣺28-t-2t=14»ò2t+t-28=14£¬
¡àt=$\frac{14}{3}$»ò14£¬
¡àÔ˶¯$\frac{14}{3}$ »ò14Ãëʱ¼äºó£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ®

£¨2£©Èçͼ2ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚF£®

¡ßAC¡ÎED£¬AE¡ÎCD£¬
¡àËıßÐÎAEDCÊÇƽÐÐËıßÐΣ¬
¡àAE=CD=15£¬ÉèBDΪx£¬ÔòAB2-BH2=AE2-HE2£¬
¡à132-x2=152-£¨14-x£©2£¬
½âµÃx=5£¬
¡àAH=12£¬BH=5£¬HE=9£¬
ÔÚRT¡÷CFDÖУ¬DF=$\sqrt{C{D}^{2}-C{F}^{2}}$=9£¬
¢Ùµ±µãPÔ˶¯µ½µãD¡¢µãQÔ˶¯µ½µãFʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬
¡àVP£ºVQ=BH£ºDF=5£º9£¬
¢Úµ±µãPÔ˶¯µ½µãF¡¢µãQÔ˶¯µ½µãDʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬
¡àVP£ºVQ=BF£ºDH=19£º23£®
¹Ê´ð°¸·Ö±ðΪ5£º9»ò19£º23£®

£¨3£©Èçͼ3ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚF£®



µ±AP=AC=PQʱ£¬ËıßÐÎAPQCÊÇÁâÐΣ¬ÓÉ£¨2£©¿ÉÖª£¬AE=CD=15£¬AD=12£¬BD=5£¬
¡ßAC=AP=14£¬
¡àDP=$\sqrt{1{4}^{2}-1{2}^{2}}$=2$\sqrt{13}$£¬
¡àBP=5+2$\sqrt{13}$£¬DQ=14-5-2$\sqrt{2}$=9-2$\sqrt{3}$£¬
¡àVP£ºVQ=BP£ºDQ=£¨5+2$\sqrt{13}$£©£º£¨9-2$\sqrt{13}$£©»òVP£ºVQ=£¨19+2$\sqrt{13}$£©£º£¨23-2$\sqrt{13}$£©£¬
¹Ê´ð°¸Îª=£¨5+2$\sqrt{13}$£©£º£¨9-2$\sqrt{13}$£©»òVP£ºVQ=£¨19+2$\sqrt{13}$£©£º£¨23-2$\sqrt{13}$£©£¬

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌ⡢ƽÐÐËıßÐεÄÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬ÁË¡¢ÌâµÄ¹Ø¼üÊÇÌí¼Ó¸¨ÖúÏß¹¹ÔìÏàËÆÈý½ÇÐνâ¾öÎÊÌ⣬ËùÒÔÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬ÒÑÖªÔÚ¡÷ABCÖУ¬µãD¡¢E¡¢F·Ö±ðÊÇAB¡¢AC¡¢BCµÄÖе㣮ÏÂÁнáÂÛ²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{DE}$¡Î$\overrightarrow{BC}$B£®$\overrightarrow{AD}-\overrightarrow{AE}=\overrightarrow{DE}$C£®$\overrightarrow{DB}$=$-\overrightarrow{FE}$D£®$\overrightarrow{DB}+\overrightarrow{DE}+\overrightarrow{FE}=\overrightarrow{DE}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬µãM£¬N·Ö±ðÔÚ¡ÏAOBµÄ±ßOA£¬OBÉÏ£¬ÇÒOM=ON£®
£¨1£©ÀûÓó߹æ×÷ͼ£º¹ýµãM£¬N·Ö±ð×÷OA£¬OBµÄ´¹Ïߣ¬Á½Ìõ´¹ÏßÏཻÓÚµãD£¨²»ÓÃд×÷·¨£¬Ö»±£Áô×÷ͼºÛ¼££©£»
£¨2£©Á¬½ÓOD£¬Èô¡ÏAOB=70¡ã£¬Ôò¡ÏODNµÄ¶ÈÊýÊÇ55¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ð¡Ã÷×÷Éú³É¡°ÖеãËıßÐΡ±µÄÊýѧÓÎÏ·£¬¾ßÌå²½ÖèÈçÏ£º
£¨1£©Èλ­Á½ÌõÏ߶ÎAB¡¢CD£¬ÇÒABÓëCD½»ÓÚµãO£¬OÓëA¡¢B¡¢C¡¢DÈÎÒâÒ»µã¾ù²»Öغϣ®Á¬½áAC¡¢BC¡¢BD¡¢AD£¬µÃµ½ËıßÐÎACBD£»
£¨2£©·Ö±ð×÷³öAC¡¢CB¡¢BD¡¢DAµÄÖеãA1£¬B1£¬C1£¬D1£¬ÕâÑù¾ÍµÃµ½Ò»¸ö¡°ÖеãËıßÐΡ±£®
¢ÙÈôAB¡ÍCD£¬ÔòËıßÐÎA1B1C1D1µÄÐÎ×´Ò»¶¨ÊǾØÐΣ¬ÕâÑù×÷ͼµÄÒÀ¾ÝÊÇÈý½ÇÐÎÖÐλÏ߶¨Àí£¬Æ½ÐÐËıßÐεĶ¨Ò壨»òÅж¨¶¨Àí£©£¬¾ØÐεĶ¨Ò壨»òÅж¨¶¨Àí£©£®
¢ÚÇëÄãÔÙ¸ø³öÒ»¸öABÓëCDÖ®¼äµÄ¹Øϵ£¬²¢Ð´³öÔÚ¸ÃÌõ¼þϵõ½µÄ¡°ÖеãËıßÐΡ±A1B1C1D1µÄÐÎ×´ÁâÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª£ºx=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$£¬y=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$£®ÄÇô$\frac{y}{x}$+$\frac{x}{y}$=98£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁÐÃüÌâÖУ¬¼ÙÃüÌâÊÇ£¨¡¡¡¡£©
A£®Èç¹ûÁ½ÌõÖ±Ï߶¼ÓëµÚÈýÌõÖ±ÏßƽÐУ¬ÄÇôÕâÁ½ÌõÖ±ÏßÒ²»¥ÏàƽÐÐ
B£®ÔÚͬһƽÃæÄÚ£¬¹ýÒ»µãÓÐÇÒÖ»ÓÐÒ»ÌõÖ±ÏßÓëÒÑÖªÖ±Ïß´¹Ö±
C£®Á½ÌõÖ±Ïß±»µÚÈýÌõÖ±ÏßËù½Ø£¬Í¬ÅÔÄڽǻ¥²¹
D£®Á½Ö±ÏßƽÐУ¬ÄÚ´í½ÇÏàµÈ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ACÊǾØÐÎABCDµÄ¶Ô½ÇÏߣ¬DE¡ÍACÓÚµãE£®
£¨1£©µ±AD=10.4cmʱ£¬BC=10.4 cm£»
£¨2£©µ±¡ÏCAD=32¡ãʱ£¬Çó¡ÏCDEµÄ¶ÈÊý£»
£¨3£©µ±AE£ºEC=3£º1£¬ÇÒDC=6cmʱ£¬ÇóACµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¾ØÐÎABCDÖУ¬AB=10£¬BC=4£¬QΪAB±ßµÄÖе㣬PΪCD±ßÉϵĶ¯µã£¬ÇÒ¡÷AQPÊÇÑü³¤Îª5µÄµÈÑüÈý½ÇÐΣ¬ÔòCPµÄ³¤Îª2¡¢7»ò8£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸