分析 (1)根据圆周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,则CB⊥AB,从而证得BC是⊙O的切线;
(2)通过证得△DEF∽△DBE,得出相似三角形的对应边成比例即可证得结论.连接DA、DO,先证得OD∥BE,得出$\frac{PD}{PE}$=$\frac{PO}{PB}$,然后根据已知条件求得PD=4,通过证得△PDA∽△POD,根据相似三角形的性质即可得到结论.
解答 (1)证明:∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠EAB+∠ABE=90°,
∵∠EAB=∠BDE,∠BDE=∠CDE,
∴∠CBE+∠ABE=90°,
即∠ABC=90°,
∴AB⊥BC,
∴BC是O的切线;
(2)解:连接DA、DO,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠EBD=∠OBD,
∴∠EBD=∠ODB,
∴OD∥BE,
∴$\frac{PD}{PE}$=$\frac{PO}{PB}$,
∵PA=AO,
∴PA=AO=OB,
∴$\frac{PO}{PB}$=$\frac{2}{3}$
∴$\frac{PD}{PE}$=$\frac{2}{3}$,
∴$\frac{PD}{PD+DE}=\frac{2}{3}$,
∵DE=2,
∴PD=4,
∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,
∴∠PDA=∠ABE,
∵OD∥BE,
∴∠AOD=∠ABE,
∴∠PDA=∠AOD,
∵∠P=∠P,
∴△PDA∽△POD,
∴$\frac{PD}{PO}=\frac{PA}{PD}$,
设OA=x,
∴PA=x,PO=2x,
∴$\frac{4}{2x}=\frac{x}{4}$,
∴2x2=16,x=2$\sqrt{2}$,
∴OA=2$\sqrt{2}$.
点评 本题考查了切线的判定,三角形相似的判定和性质;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
等级 | 成绩(分) | 频数(人数) | 频率 |
A | 90~100 | 19 | 0.38 |
B | 75~89 | m | x |
C | 60~74 | n | y |
D | 60以下 | 3 | 0.06 |
合计 | 50 | 1.00 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 12cm | B. | 16cm | C. | 20cm | D. | 28cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com