精英家教网 > 初中数学 > 题目详情
在直角坐标平面内,函数y=
m
x
(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)求出反比例函数解析式;
(2)若四边形ABCD的面积为4,求点B的坐标;
(3)在(2)的条件下请在图上连接OA,OB.并求出△AOB的面积.
(1)∵y=
m
x
过点A(1,4),
∴m=xy=4,
∴反比例函数解析式为:y=
4
x


(2)∵B(a,b)在y=
4
x
上,
∴ab=4,
∵S四边形ABCD=
1
2
•BD•AC
1
2
a×4=4,
解得:a=2,
∴b=2,
B(2,2);

(3)设直线AB为y=kx+b,将A(1,4),B(2,2)两点坐标代入,得
k+b=4
2k+b=2

解得:k=-2,b=6,
∴直线AB解析式为:y=-2x+6,
直线AB与y轴的交点为E(0,6),
即OE=6,
∴S△AOB=S△BOE-S△AOE=
1
2
•OE•BD-
1
2
•OE•OC
=
1
2
×6×2-
1
2
×6×1=3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=
m
x
(x>0)
的图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点
①求反比例函数解析式;
②通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
③对于一次函数y=kx+3-kx(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=
k
x
(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),则点B的坐标为(  )
A.(3,
2
3
B.(4,
1
2
C.(
9
2
4
9
D.(5,
2
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数的图象经过点(2,-1),则它的解析式是(  )
A.y=-2xB.y=2xC.y=
2
x
D.y=-
2
x

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x-1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数y=
k
x+2
(k≠0)
的图象是由反比例函数y=
k
x
(k≠0)
的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数y=
4
x
的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数y=
4
x
的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式
4
x-1
≤ax-1
的解集.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
(k≠0)和一次函数y=-x+8.
(1)若一次函数和反函数的图象交于点(4,m),求m和k;
(2)k满足什么条件时,这两个函数图象有两个不同的交点;
(3)设(2)中的两个交点为A、B,试判断∠AOB是锐角还是钝角?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A、B是双曲线y=
3
x
上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1(x1,y1)、P2(x2,y2)在反比例函数y=
1
x
(x>0)的图象上,则y1+y2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)求这一函数的解析式;
(2)当气体体积为1m3时,气压是多少?
(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3

查看答案和解析>>

同步练习册答案