精英家教网 > 初中数学 > 题目详情

如下图,PA,PB是⊙O的两条切线,A、B是切点,CD切劣弧AB于点E,已知切线PA的长为6cm,则△PCD的周长为______cm.
 

12

解析试题分析:根据切线长定理得:PA=PB,AC=EC,BD=ED,再根据三角形的周长公式即可求得结果.
根据切线长定理得:PA=PB,AC=EC,BD=ED,
则△PCD的周长=PC+CD+PD=PC+CE+DE+PD=PC+AC+BD+PD=2PA=12cm.
考点:切线长定理
点评:解题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
精英家教网
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是
 

(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年广西大学附属中学九年级10月月考数学试卷(解析版) 题型:填空题

如下图,PA,PB是⊙O的两条切线,A、B是切点,CD切劣弧AB于点E,已知切线PA的长为6cm,则△PCD的周长为______cm.

 

 

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省无锡市江阴市九年级(上)期中数学试卷(解析版) 题型:解答题

几何模型:
条件:如下图,A、B是直线l同旁的两个定点.

问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.

查看答案和解析>>

科目:初中数学 来源:2012年安徽省中考数学模拟试卷(十六)(解析版) 题型:解答题

几何模型:
条件:如下图,A、B是直线l同旁的两个定点.

问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.

查看答案和解析>>

同步练习册答案