精英家教网 > 初中数学 > 题目详情
9.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
平均数(环)9.149.159.149.15
方差6.66.86.76.6
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择(  )
A.B.C.D.

分析 利用平均数和方差的意义进行判断.

解答 解:丁的平均数最大,方差最小,成绩最稳当,
所以选丁运动员参加比赛.
故选D.

点评 本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.抛物线y=4x2-2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.
(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;
(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;
(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.分解因式:ab-b2=b(a-b).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:
①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是(  )
A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.
(1)求抛物线的解析式;
(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;
(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数.
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为(  )
A.100°B.110°C.115°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是24.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在湖边高出水面50m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则飞艇底部P距离湖面的高度为(参考等式:$\frac{1}{\sqrt{3}-1}$=$\frac{\sqrt{3}+1}{2}$)(  )
A.25$\sqrt{3}$+75B.50$\sqrt{3}$+50C.75$\sqrt{3}$+75D.50$\sqrt{3}$+100

查看答案和解析>>

同步练习册答案