精英家教网 > 初中数学 > 题目详情
1.一个小球由静止开始从一个斜坡上滚下,其速度每秒增加3米.
(1)写出小球的速度v(米/秒)与时间t(秒)之间的函数表达式;
(2)画出这个函数图象.

分析 (1)根据题意可以得到小球的速度v(米/秒)与时间t(秒)之间的函数表达式;
(2)根据画函数图象的一般步骤可以画出(1)中求得的函数的图象.

解答 解:(1)由题意可得,
v=3t,
即小球的速度v(米/秒)与时间t(秒)之间的函数表达式是v=3t;
(2)v=3t,
列表为:

作图为:

点评 本题考查一次函数的应用,解题的关键是明确题意,可以列出相应的函数解析式,明确画函数图象的一般步骤.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情况.情形一:如图2,沿等腰三角形△ABC顶角∠BAC的平分线AD折叠,点B与点C重合;情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是(填“是”或“不是”)
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系,并说明理由.根据以上内容猜想:若经过n 次折叠∠BAC是△ABC的好角,则∠B与∠C不妨设∠B>∠C)之间的等量关系为∠B=n∠C.
应用提升
(3)小丽找到一个三角形,三个角分别为15°,60°,105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是5°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,把小矩形放在第二象限,使两条边与坐标轴重合,然后将小矩形无滑动的沿x轴顺时针滚动,每一次边落在x轴上记作一次操作,己知顶点P(-1,2),则经过2015次操作后点P的坐标为(3021,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列运算结果正确的是(  )
A.a6÷a3=a2B.a3•a4=a7C.(a23=a5D.2a3+a3=3a6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.分解因式:16-4x2=4(2+x)(2-x).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在Rt△ABC中,∠ACB=90°,点D在AB边上,AD=BD,过点D作射线DH,交BC边于点M.
(1)如图1,若∠B=30°,求证:△ACD是等边三角形;
(2)如图2,若AC=10,AD=13,∠CDH=∠A.
①求线段DM的长;
②点P是射线DH上一点,连接AP交CD于点N,当△DMN是等腰三角形时,求线段MP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,已知一次函数y=kx+b,观察图象回答问题:当kx+b>0,x的取值范围是
(  )
A.x>2.5B.x<2.5C.x>-5D.x<-5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列运算正确的是(  )
A.x3x2=x6B.(-2x3)(-3x2)=6x5C.(-2x)2=-4x2D.x2+x2=2x4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,直线l1∥l2,正方形ABCD的顶点A在l1上,顶点B、C、D在l1下方,等边三角形DEF的顶点F在上l2,顶点D、E在l2上方,且点A、D、F在同一直线上,若∠2=60°,则∠1的大小为(  )
A.30°B.60°C.45°D.15°

查看答案和解析>>

同步练习册答案