精英家教网 > 初中数学 > 题目详情
18、如图,在△ABC中,∠BAC=60°,BD、CE分别是边AC,AB上的高,BD、CE相交于点O,则∠BOC的度数是
120°
分析:由垂直的定义得到∠ADB=∠BEC=90°,再根据三角形内角和定理得∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,然后根据三角形的外角性质有∠BOC=∠EBD+∠BEO,计算即可得到∠BOC的度数.
解答:解:∵BD、CE分别是边AC,AB上的高,
∴∠ADB=∠BEC=90°,
又∵∠BAC=60°,
∴∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,
∴∠BOC=∠EBD+∠BEO=90°+30°=120°.
故答案为120°.
点评:本题考查了三角形的外角性质:三角形的任一外角等于与之不相邻的两内角的和.也考查了垂直的定义以及三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案