精英家教网 > 初中数学 > 题目详情
精英家教网如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2
(1)求⊙O1的半径;
(2)求图中阴影部分的面积.
分析:(1)利用正方形的性质根据勾股定理可得半径.
(2)连接01E,从图中看出阴影部分的面积等于4倍的扇形面积减三角形面积,依面积公式计算即可.
解答:解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,
∴BD=
16+16
=4
2

∴BO1=
1
4
BD=
2

∴⊙O1的半径=
2

精英家教网
(2)设线段AB与圆O1的另一个交点是E,连接01E
∵BD为正方形ABCD的对角线
∴∠ABO=45°
∵O1E=O1B
∴∠BEO1=∠EBO1=45°
∴∠BO1E=90°
∴S1=S扇形O1BE-S△O1BE=
90×π×2
360
-
1
2
×2
=
1
2
π
-1
根据图形的对称性得:S1=S2=S3=S4
∴S阴影=4S1=2π-4.
点评:本题综合考查了正方形的性质和勾股定理的应用及扇形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案