【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的是_________(只填序号).
科目:初中数学 来源: 题型:
【题目】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )
A. ∠1=60°,2=40° B. ∠1=50°,∠2=40°
C. ∠1=∠2=40° D. ∠1=∠2=45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;其中会随点P的移动而变化的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在¨ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点与分别是两个函数图象与上的任一点.当时,有成立,则称这两个函数在上是“相邻函数”,否则称它们在上是“非相邻函数”.例如,点与分别是两个函数与图象上的任一点,当时, ,通过构造函数并研究它在上的性质,得到该函数值得范围是,所以成立,因此这两个函数在上是“相邻函数”.
()判断函数与在上是否为“相邻函数”,并说明理由.
()若函数与在上是“相邻函数”,求的取值范围.
()若函数与在上是“相邻函数”,直接写出的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com