精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A10),B0,﹣2),C2,﹣1);

1)画出关于x轴对称的△AB1C1

2)以原点O为位似中心,画出△A2B2C2,使△A2B2C2与△ABC的位似比为21

【答案】1)见解析;(2)见解析.

【解析】

1)根据“图形关于x轴对称,对应点的横坐标不变,纵坐标互为相反数”分别画出BC两点关于x轴的对称点B1C1,再将AB1C1三点依次连接即可;

2)若△A2B2C2与△ABC位于原点的异侧,可将ABC三点的横、纵坐标分别乘以-2,得到其对应点A2B2C2的坐标,再在坐标系中描点连线即可得到结果;若△A2B2C2与△ABC位于原点的同侧,可将ABC三点的横、纵坐标分别乘以2,同上述作法可得另一个符合题意的位似图形.

解:(1)如图所示,AB1C1即为所求;

2)如图所示,A2B2C2即为所求.(答案不唯一)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).

请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是   人,并将以上两幅统计图补充完整;

2)若一般优秀均被视为达标成绩,则我校被抽取的学生中有   人达标;

3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为(  )

A. (1,1) B. (0, C. D. (﹣1,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加,某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见表:

A型销售数量(台)

B型销售数量(台)

总利润(元)

5

3

950

3

4

900

(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?

(2)该公司计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不多于A型空气净化器的2倍,为使该公司销售完这80台空气净化器后的总利润最大,请你设计相应的进货方案;

(3)已知A型空气净化器的净化能力为200m3/小时,B型空气净化器的净化能力为300m3/小时,某长方体室内活动场地的总面积为200m2,室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,若不考虑空气对流等因素,至多要购买A型空气净化器多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图1,在△ABC中,∠ACB90°,BCAC,点DAB上,DEABBCE,点FAE的中点

1)写出线段FD与线段FC的关系并证明;

2)如图2,将△BDE绕点B逆时针旋转α0°<α90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;

3)将△BDE绕点B逆时针旋转一周,如果BC4BE2,直接写出线段BF的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于AB两点,与y轴交于点C0,﹣2),点A的坐标是(20),P为抛物线上的一个动点,过点PPDx轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1

1)求抛物线的函数表达式;

2)若点P在第二象限内,且PEOD,求△PBE的面积.

3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点M为二次函数y=﹣(xb2+4b+1图象的顶点,直线ymx+5分别交x轴正半轴,y轴于点AB

1)判断顶点M是否在直线y4x+1上,并说明理由.

2)如图1,若二次函数图象也经过点AB,且mx+5>﹣(xb2+4b+1,根据图象,写出x的取值范围.

3)如图2,点A坐标为(50),点MAOB内,若点Cy1),Dy2)都在二次函数图象上,试比较y1y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,顶点ABx轴上,AB=5,点C在第一象限,且菱形ABCD的面积为20 A坐标为(-20),则顶点C的坐标为________.

查看答案和解析>>

同步练习册答案