精英家教网 > 初中数学 > 题目详情

【题目】为迎接2016年中考,某中学对全校九年级学生进行了一次数学模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:

1)这次调査中,一共抽取了多少名学生?

2)求样本中表示成绩为“中”的人数,并将条形统计图补充完整;

3)该学校九年级共有1000人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?

【答案】1)一共抽取了50名学生; 210人,统计图见解析;(3)该校九年级共有200名学生的数学成绩可以达到优秀

【解析】

1)根据统计图可以求得本次调查的学生数;

2)根据(1)中的结果和统计图中的数据可以求得“中”的学生数,从而可以将条形统计图补充完整;

3)根据统计图可以求得该校九年级共有多少名学生的数学成绩可以达到优秀.

【解答】解:(122÷44%50

即这次调査中,一共抽取了50名学生;

250×20%10

补全的条形统计图如右图所示,

31000×200

即该校九年级共有200名学生的数学成绩可以达到优秀.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线为正整数,且)与轴的交点为,当时,第1条抛物线轴的交点为,其他依次类推.

1)求的值及抛物线的解析式;

2)抛物线的顶点的坐标为( );依次类推,第条抛物线的顶点的坐标为( );所有抛物线的顶点坐标满足的函数关系式是

3)探究下列结论:

①是否存在抛物线,使得为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由;

②若直线与抛物线分别交于则线段,…则线段,…的长有何规律?请用含的代数式表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点M的坐标是(-2),My轴相切于点C,与x轴相交于AB两点.

(1)证明:MAB是等边三角形.

(2)M上是否存在点D,使ACD是直角三角形,若存在,试求点D的坐标;若不存在,请说明理由.

(3)Pmn)是过ABC三点的抛物线上一点,当APB30°时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度ym)与水平距离xm)的路线为抛物线的一部分,如图,甲在O点正上方1mP处发出一球,已知点O与球网的水平距离为5m,球网的高度为1.55m.羽毛球沿水平方向运动4m时,达到羽毛球距离地面最大高度是m

1)求羽毛球经过的路线对应的函数关系式;

2)通过计算判断此球能否过网;

3)若甲发球过网后,羽毛球飞行到离地面的高度为mQ处时,乙扣球成功求此时乙与球网的水平距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.

请根据以上信息,解答下列问题:

(1)这次被调查的学生共有多少人?

(2)请将条形统计图补充完整;

(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?

(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,过ABC的平行线,交∠ACB的平分线于点D,点EBC上一点,连接DE,交AB于点F,∠DEB+CAD180°.

1)如图1,求证:四边形ACED是菱形;

2)如图2GAD的中点,HAC边中点,连接CGEGEH,若∠ACB90°,BC2AC,在不添加任何辅助线的情况下,请直接写出图中与△CEH全等的三角形(不含△CEH本身).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】电影公司随机收集了2000部电影的有关数据,经分类整理得到如表:

电影类型

第一类

第二类

第三类

第四类

第五类

第六类

电影部数

140

50

300

200

800

510

好评率

注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.

如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是______

电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,可使改变投资策略后总的好评率达到最大?

答:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过圆外一点PO的两条切线,切点分别为AB,连接AB,在ABPBPA上分别取一点DEF,使ADBEBDAF,连接DEDFEF,则∠EDF等于(  )

A.90°﹣∠PB.90°﹣PC.180°﹣∠PD.45°﹣P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线与双曲线x>0)交于点

1)求ak的值;

2)已知直线过点且平行于直线,点Pmn)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线x>0)于点,双曲线在点MN之间的部分与线段PMPN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.

①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.

查看答案和解析>>

同步练习册答案