精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B、E、C、G在一直线上.
(1)若BE=a,求DH的长;
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.

【答案】分析:(1)可通过构建直角三角形求解.连接FH,则FH∥BE且FH=BE,FH⊥CD.因此三角形DFH为直角三角形.
点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,那么DF=3a-a=2a,DF=2a,FH=a,根据勾股定理就求出了DH的长.
(2)设BE=x,△DHE的面积为y,通过三角形DHE的面积=三角形CDE的面积+梯形CDHG的面积-三角形EGH的面积,来得出关于x,y的函数关系式,然后根据函数的性质求出y取最小值时x的值,并求出此时y的值.
解答:解:(1)连接FH,则FH∥BE且FH=BE,
在Rt△DFH中,DF=3a-a=2a,FH=a,∠DFH=90°,
所以,DH==a;

(2)设BE=x,△DHE的面积为y,
依题意y=S△CDE+S梯形CDHG-S△EGH
=×3a×(3a-x)+×(3a+x)×x-×3a×x
=x2-ax+a2
y=x2-ax+a2=(x-a)2+a2
当x=a,即BE=BC,E是BC的中点时,y取最小值,△DHE的面积y的最小值为a2
点评:本题主要考查了正方形的性质,二次函数的综合应用等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案