【题目】如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为k.
解答问题:
(1)①当点C与点F重合时,如图2所示,可得的值为 ;
②在平移过程中,的值为 (用含k的代数式表示);
(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算的值;
(3)将图1中的三角板ABC绕点C逆时针旋转α度,0<α≤90,原题中的其他条件保持不变.计算的值(用含k的代数式表示).
【答案】(1)①=1;②=;(2).(3).
【解析】
试题分析:(1)①根据题意可得EM垂直平分DF,直线AF∥EM,从而转化为,继而得出结论;②仿照①的思路进行求解即可;
(2)先补全图形,连接AE,分别求出AM及DM的值,然后可确定比值.
(3)先画出图形,然后证明△ABG≌△CBE,继而推出AG∥DE,△AGM∽△DEM,利用相似三角形的性质即可得出答案.
解:(1)①如图,
∵∠MEB=45°,∠AFB=45°,
∴EM垂直且平分DF,AF∥EM,
∴==1;
②如图
由①可得====;
(2)连接AE,
∵△ABC,△DEF均为等腰直角三角形,DE=2,AB=1,
∴EF=2,BC=1,∠DEF=90°,∠4=∠5=45°
∴DF=2,AC=,∠EFB=90°,
∴DF=2AC,AD=,
∴点A为CD的中点,
∴EA⊥DF,EA平分∠DEF,
∴∠MAE=90°,∠AEF=45°,AE=,
∵∠BEM=45°,
∴∠1+∠2=∠3+∠2=45°,
∴∠1=∠3,
∴△AEM∽△FEB,
∴,
∴AM=,
∴DM=AD﹣AM=,
∴.
(3)过B作BE的垂线交直线EM于点G,连接AG、BG,
,
∴∠EBG=90°,
∵∠BEM=45°,
∴∠EGB=∠BEM=45°,
∴BE=BG,
∵△ABC为等腰直角三角形,
∴BA=BC,∠ABC=90°,
∴∠1=∠2,
∴△ABG≌△CBE,
∴AG=EC=k,∠3=∠4,
∵∠3+∠6=∠5+∠4=45°,
∴∠6=∠5,
∴AG∥DE,
∴△AGM∽△DEM,
∴.
科目:初中数学 来源: 题型:
【题目】对于一个矩形ABCD及⊙M给出如下定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:
(1)求张强返回时的速度;
(2)妈妈比按原速返回提前多少分钟到家?
(3)请直接写出张强与妈妈何时相距1200米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格y1(单位:万元/m2)与月份x(6≤x≤11,x为整数)之间满足一次函数关系:每月的销售面积为y2(单位:m2),其中y2=﹣2000x+26000(6≤x≤11,x为整数).
(1)求y1与月份x的函数关系式;
(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?
(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4618.4万元,请根据以上条件求出a的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000 美元税收,其中1100000000 用科学记数法表示应为( )
A. 0.11108B. 1.11010C. 1.1109D. 11108
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com