精英家教网 > 初中数学 > 题目详情

【题目】实验探究:

(1)如图1,对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BNMN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.

(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MNBM的数量关系,写出折叠方案,并结合方案证明你的结论.

【答案】1)见解析;(2)见解析.

【解析】

1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;
2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BMO处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM

(1)猜想:∠MBN=30.

理由:如图1中,连接AN,∵直线EFAB的垂直平分线,

NA=NB

由折叠可知,BN=AB

AB=BN=AN,

∴△ABN是等边三角形,

∴∠ABN=60

NBM=ABM=ABN=30.

(2)结论:MN=BM.

折纸方案:如图2中,折叠△BMN,使得点N落在BMO处,折痕为MP,连接OP.

理由:由折叠可知△MOP≌△MNP

MN=OM,OMP=NMP=OMN=30=B

MOP=MNP=90

∴∠BOP=MOP=90

OP=OP

∴△MOP≌△BOP

MO=BO=BM

MN=BM.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.

(1)求点C的坐标;

(2)当∠BCP=15°时,求t的值;

(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A在数轴上所对应的数为﹣2

1)点B在点A右边距A4个单位长度,求点B所对应的数;

2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求AB两点间距离.

3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间AB两点相距4个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B分别为数轴上的两点,点A表示的数是﹣30,点B表示的数是50.

(1)请写出线段AB中点M表示的数是   

(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇.

①求A、B两点间的距离;

②求两只蚂蚁在数轴上的点C相遇时所用的时间;

③求点C对应的数是多少?

(3)若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,同时另一只蚂蚁恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只蚂蚁在数轴上的D点相遇,求D点表示的数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与双曲线相交于点A(m,3),与x轴交于点C.

(1)求双曲线的解析式;

(2)Px轴上,如果ACP的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,则

A. B. C. 2D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间_____小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3a0)经过点A10),B0),且与y轴相交于点C

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当△DCE与△AOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,是由一些大小相同的小正方体组合成的简单几何体,并放在墙角.(注:图3、图4、图5每一个小方格的边长为1cm

1)该几何体主视图如图3所示,请在图4方格纸中画出它的俯视图;

2)若将其露在外面的表面涂一层漆,则其涂漆面积为   cm2.(正方体的棱长为1cm

3)用一些小立方块搭一个几何体,使它的主视图和俯视图如图所示,它最少需要多少个小立方块?最多需要多少个小立方块?并在图5方格纸中画出需要最多小立方块的几何体的左视图.

查看答案和解析>>

同步练习册答案