精英家教网 > 初中数学 > 题目详情
已知:如图,PA为⊙O的切线,A为切点,割线PBC过圆心O,PA=4,PB=2.
(1)求BC、AB的长;
(2)若∠BAC的平分线与BC和⊙O分别相交于点D、E.求AE的长.
(1)设BC=x,PC=BC+BP=x+2,PA=4,
∵PA为⊙O的切线,PC为⊙O的割线,
∴PA2=PB•PC,即16=2(x+2),
解得:x=6,则BC=6;
∵PA为⊙O的切线,
∴∠PAB=∠C,又∠P=∠P,
∴△PBA△PAC,
AB
AC
=
PB
PA
,又PB=2,PA=4,
AB
AC
=
PB
PA
=
1
2

∴AC=2AB,
设AB=k,AC=2k,
∵CB为圆的直径,∴∠CAB=90°,
在Rt△ABC中,由BC=6,
根据勾股定理得:BC2=AB2+AC2
即36=k2+4k2,解得:k=
6
5
5

则AB=
6
5
5


(2)∵AE为∠CAB的平分线,∴∠CAE=∠BAE,
又∵AP为圆的切线,∴∠PAB=∠C,
∵∠PDA为△CAD的外角,
∴∠PDA=∠C+∠CAE,又∠PAD=∠PAB+∠BAD,
∴∠PAD=∠PDA,
∴PA=PD=4,
∴BD=DP-BP=4-2=2,CD=CB-BD=6-2=4,OD=CD-OC=4-3=1,
连接AO,OE,由PA为圆的切线,得到∠OAP=90°,
∴∠OAE+∠DAP=90°,
∵OA=OE,∴∠OAE=∠OEA,
又∠PAD=∠PDA=∠ODE,
∴∠OEA+∠ODE=90°,
∴∠EOD=90°,
在Rt△EOD中,由OD=1,OE=3,
由勾股定理得DE=
10

由相交弦定理得:AD•DE=BD•CD,
∴AD=
BD•CD
DE
=
2×4
10
=
4
10
5

则AE=AD+DE=
4
10
5
+
10
=
9
10
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知正方形ABCD的边长为2,点P是BC上的一点,将△DCP沿DP折叠至△DPQ,若DQ,DP恰好与如图所示的以正方形ABCD的中心O为圆心的⊙O相切,则折痕DP的长为(  )
A.
2
3
3
B.
4
3
3
C.
2
3
5
D.
4
3
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,∠ACB=90°,以AC为直径的⊙O交AB于D点,过D作⊙O的切线交BC于E点,EF⊥AB于F点,连OE交DC于P,则下列结论,其中正确的有(  )
①BC=2DE;②OEAB;③DE=
2
PD;④AC•DF=DE•CD.
A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,△ABC内接于⊙O1,AB=AC,⊙O2与BC相切于点B,与AB相交于点E,与⊙O1相交于点D,直线AD交⊙O2于点F,交CB的延长线于点G.
求证:(1)∠G=∠AFE;(2)AB•EB=DE•AG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA、PB切⊙O于A、B,若∠APB=60°,⊙O半径为3,求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC中,CA=CB,点D为AC的中点,以AD为直径的⊙O切BC于点E,AD=2.
(1)求BE的长;
(2)过点D作DFBC交⊙O于点F,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.
(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;
(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)试判断直线AD与CD的位置关系,并说明理由;
(2)连接BC,若AD=2,AC=
5
,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,AD是⊙O直径,过点A的切线与CB的延长线交于点E.
(1)求证:EA2=EB•EC;
(2)若EA=AC,cos∠EAB=
4
5
,AE=12,求⊙O的半径.

查看答案和解析>>

同步练习册答案