【题目】已知:在四边形ABCD中,∠ABC=∠ADC=90,M、N分别是CD和BC上的点.
求作:点M、N,使△AMN的周长最小.
作法:如图,
(1)延长AD,在AD的延长线上截取DA=DA;
(2)延长AB,在AB的延长线上截取B A″=BA;
(3)连接A′A″,分别交CD、BC于点M、N.则点M、N即为所求作的点.
请回答:这种作法的依据是_____________.
【答案】①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)
②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);
③两点之间线段最短.
【解析】分析:分别作出点A关于CD,BC的对称点A′,A″,连接A′A″分别交CD、BC于点M、N此时△AMN周长最小.
详解:作图的依据是:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)
②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);
③两点之间线段最短.
故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)
②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);
③两点之间线段最短.
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A.直线外一点到这条直线的垂线段,叫做点到直线的距离;
B.已知线段,轴,若点的坐标为(-1,2),则点的坐标为(-1,-2)或(-1,6);
C.若与互为相反数,则;
D.已知关于的不等式的解集是,则的取值范围为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴的单位长度为1
(1)如果点表示的数互为相反数,那么点表示的数是_______,点表示的数是_______;
(2)如果点表示的数互为相反数,那么四点中,点_______表示的数的绝对值最大,请简要说明理由;
(3)当点为原点时,若存在一点到点的距离是点到点的距离的2倍,则点所表示的数是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离(米)与小明出发的时间(分)之间的关系,则小明出发______分钟后与爸爸相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行驶里程如下:(单位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地时,距下午出车地点是多少千米?
(2)若汽车耗油量为升∕千米,这天下午共耗油多少升
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.
(1)求这两个函数的解析式;
(2)求△OAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接AE,若AB=6,CD=1,则AE的长为( )
A. 3 B. 8 C. 12 D. 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com