精英家教网 > 初中数学 > 题目详情
如图,直线由直线沿轴向右平移9个单位得到,则直线与直线的距离为          
 

试题分析:直线a、b分别与x轴交于A、B,过B点作BC⊥直线a,CD⊥AB于D点,先确定A点坐标为(-3,0),根据平移确定B点坐标为(6,0),设C点坐标为(m,n),则n=m+4,易得△ADC∽△CDB,则CD:DB=AD:DB,即CD2=AD•DB,于是(m+4)2=(m+3)(6-m),解得m1=,m2=-3(舍去),然后计算出BD与CD的值,再利用勾股定理计算BC即可.
直线a、b分别与x轴交于A、B,过B点作BC⊥直线a,CD⊥AB于D点

把x=0代入y=x+4得x+4=0,解得x=-3,则A点坐标为(-3,0),
∵直线b由直线a:y=x+4沿x轴向右平移9个单位得到,
∴B点坐标为(6,0),
设C点坐标为(m,n),则n=m+4,
∵△ADC∽△CDB,
∴CD:DB=AD:DB,即CD2=AD•DB,
∴(m+4)2=(m+3)(6-m),解得m1=,m2=-3(舍去),
∴BD=6=,CD=×+4=

点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,OA、OB的长分别是关于x的方程的两根,且。请解答下列问题:

(1)求直线AB的解析式;
(2)若P为AB上一点,且,求过点P的反比例函数的解析式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中, 已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点 Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.

(1)求直线AC的解析式;
(2)当t为何值时,△CQE的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数的图像与反比例函数的图像相交于A、B两点,

(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像回答:当x取何值时
(3)根据图像回答:当x取何值时

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对关于的一次函数和二次函数.
(1) 当时, 求函数的最大值;
(2) 若直线和抛物线有且只有一个公共点, 求
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市南山区两村盛产荔枝,甲村有荔枝200吨,乙村有荔枝300吨.现将这些荔枝运到A,B两个冷藏仓库,已知A仓库可储存240吨,B仓库可储存260吨;从甲村运往A、B两处的费用分别为每吨20元和25元,从乙村运往A,B两处的费用分别为每吨15元和18元.设从甲村运往A仓库的荔枝重量为吨,甲、乙两村运往两仓库的荔枝运输费用分别为元和元.
(1)请填写下表,并求出之间的函数关系式;

(2)试讨论甲、乙两村中,哪个村的运费较少;
(3)考虑到乙村的经济承受能力,乙村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的路程为16km,他们行进的路程S(km)与甲出发后的时间t(h)之间的函数图象如图所示,则下列判断错误的是()

A.乙比甲晚出发1h                    B.甲比乙晚到B地2 h
C.乙的速度是8km/h                  D.甲的速度是4km/h

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当动点Q到达点D时另一个动点P也随之停止运动.设运动的时间为t(秒).

(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;
(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?

查看答案和解析>>

同步练习册答案