科目:初中数学 来源: 题型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中数学 来源:非常讲解·教材全解全析 数学 九年级下 (配北师大课标) 配北师大课标 题型:044
如图所示,已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E,延长AC交过D、E、C三点的圆于点F.
(1)求证:EF2=ED·EA;
(2)若AE=6,EF=3,求AF·AC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:同步题 题型:解答题
数学课堂上,徐老师出示了一道试题:如图所示,在正三角形ABC中M是BC边(不含端点B,C)上任意一点.P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN。
(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。证明:在AB上截取EA=MC,连接EM,得△AEM
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,
∴∠1=∠2
又∵CN平分∠ACP,
∴∠4=∠ACP=60°
∴∠MCN=∠3+∠4=120° ①
又∵BA=BC,EA=MC,
∴BA-EA=BC-MC
即:BE=BM
∴△BEM为等边三角形
∴∠6=60°
∴∠5=180°-6=120°。②
由①②得∠MCN=∠5
在△AEM和△MCN中
∴( ),( ),( ),
∴△AEM≌△MCN(ASA)
∴AM=MN。
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1是否还成立?
(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=( )时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com