分析 (1)证得△BAC是等腰三角形后利用三线合一的性质得到AC⊥BD即可;
(2)首先证得四边形ABCD是平行四边形,然后根据对角线互相垂直得到平行四边形是菱形.
解答 证明:(1)∵AE∥BF,
∴∠BCA=∠CAD,
∵AC平分∠BAD,
∴∠BAC=∠CAD,
∴∠BCA=∠BAC,
∴△BAC是等腰三角形,
∵BD平分∠ABC,
∴AC⊥BD;
(2)∵△BAC是等腰三角形,
∴AB=CB,
∵∠CBD=∠ABD=∠BDA,
∴△ABD也是等腰三角形,
∴AB=AD,
∴DA=CB,
∵BC∥DA,
∴四边形ABCD是平行四边形,
∵AC⊥BD,
∴四边形ABCD是菱形.
点评 本题考查了菱形的判定,解题的关键是熟练掌握菱形的几个判定方法,难度不大.
科目:初中数学 来源: 题型:选择题
A. | 280米 | B. | 300米 | C. | 420米 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com