【题目】如图,在△ABC中,AB=AC,点D为边BC的中点,以AB、BD为邻边作ABDE,连结AD、EC.
(1)求证:四边形ADCE是矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?(直接写出满足的条件即可)
【答案】
(1)证明:∵在△ABC中,AB=AC,点D为边BC的中点,
∴BD=DC,∠ADC=90°,
∵四边形ABDE是平行四边形,
∴AE∥BD且AE=BD,
∴AE∥DC且AE=DC,
∴四边形ADCE是平行四边形,
又∠ADC=90°,
∴四边形ADCE是矩形;
(2)解:当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形;
理由是:∵∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴∠ACD=45°,
∵∠ADC=90°,
∴△ADC是等腰直角三角形,
∴AD=CD,
∴矩形ADCE是正方形.
【解析】(1)先根据等腰三角形三线合一的性质证明∠ADC=90°,再根据有一组对边平行且相等证明四边形ADCE是平行四边形,所以四边形ADCE是矩形;(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.
【考点精析】掌握等腰三角形的性质和平行四边形的性质是解答本题的根本,需要知道等腰三角形的两个底角相等(简称:等边对等角);平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:
【题目】【感知】如图①,四边形ABCD、CEFG均为正方形,可知BE=DG.
【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F,求证:BE=DG.
【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上,若AE=2ED,∠A=∠F,△EBC的面积为6,则菱形CEFG的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com