【题目】如图,抛物线y=ax2+bx+c经过点(1,0),对称轴为l.则下列结论:①abc>0; ②a-b+c=0; ③2a+c<0; ④a+b<0,其中所有正确的结论是______________
【答案】②③④
【解析】试题解析①∵二次函数图象的开口向下,
∴a<0,
∵二次函数图象的对称轴在y轴右侧,
∴->0,
∴b>0,
∵二次函数的图象与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,故①错误;
②∵抛物线y=ax2+bx+c经过点(-1,0),
∴a-b+c=0,故②正确;
③∵a-b+c=0,∴b=a+c.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故③正确;
④∵a-b+c=0,∴c=b-a.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2b+b-a<0,
∴3a+3b<0,∴a+b<0,故④正确.
故答案为:②③④
科目:初中数学 来源: 题型:
【题目】如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.
(1)求证:BG=DE;
(2)若点G为CD的中点,求的值;
(3)在(2)的条件下,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(-4,)、B(2,-4)是一次函数的图象和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB和轴的交点C的坐标;
(3)求方程的解(请直接写出答案);
(4)求不等式的解集(请直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB是等边三角形,且B(2,0),OC是AB边的中线,将△AOB绕点O逆时针旋转120°得到△A1OB1.
(1)B1的坐标是_______(直接写出结果即可);
(2)请画出将△A1OB1绕点O逆时针旋转120°得到的△A2OB2,并按图形旋转规律画出阴影部分;
(3)计算点B旋转到点B1所经过的弧形路线长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.
采购数量(件) | 1 | 2 | … |
A产品单价(元/件) | 1480 | 1460 | … |
B产品单价(元/件) | 1290 | 1280 | … |
(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,CD⊥AB于点D.P为AB延长线上一点,∠PCD=2∠BAC.
(1)求证:CP为⊙O的切线;
(2)若BP=1,CP=,求 ⊙O的半径;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一平面中,两条直线相交有一个交点;三条直线两两相交最多有3个交点;四条直线两两相交最多有6个交点……当相交直线的条数从2至n变化时,最多可有的交点数m与直线条数n之间的关系如下表:
则m与n的关系式为:___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com