【题目】(2015山东省德州市,24,12分)已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0), B(β,0),且.
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E.是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
【答案】(1)y=-x2+4x+2;
(2)四边形DNME的周长的最小值为10+2
(3)(2-,4),(2+,4),(2+,-4),(2-,-4).
【解析】
试题(1)利用根据与系数的关系得出α+β=,αβ=﹣2,进而代入求出m的值即可得出答案;
(2)利用轴对称求最短路线的方法,作点D关于y轴的对称点D′,点E关于x轴的对称点E′,得出四边形DNME的周长最小为:D′E′+DE,进而利用勾股定理求出即可;
(3)利用平行四边形的判定与性质结合P点纵坐标为±4,进而分别求出即可.
解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,
α+β=,αβ=﹣2,
∵=﹣2,
∴=﹣2,即=﹣2,
解得:m=1,
故抛物线解析式为:y=﹣x2+4x+2;
(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,
∵y=﹣x2+4x+2=﹣(x﹣2)2+6,
∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),
又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,
∴E点坐标为:(4,2),
作点D关于y轴的对称点D′,点E关于x轴的对称点E′,
则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),
连接D′E′,交x轴于M,交y轴于N,
此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:
延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,
则D′E′===10,
设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,
∴DE===2,
∴四边形DNME的周长最小值为:10+2;
(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,
若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,
∴PH=DG=4,
∴|y|=4,
∴当y=4时,﹣x2+4x+2=4,
解得:x1=2+,x2=2﹣,
当y=﹣4时,﹣x2+4x+2=﹣4,
解得:x3=2+,x4=2﹣,
故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).
科目:初中数学 来源: 题型:
【题目】已知⊙O 的直径为 4,AB 是⊙O 的弦,∠AOB=120°,点 P 在⊙O 上,若点 P到直线 AB 的距离为 1,则∠PAB 的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )
A. 6B. 5C. 4D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
(1)出租车的速度为100千米/时;
(2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时;
(4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+4分别与x轴,y轴交于B,A两点
(1)求△ABO的面积;
(2)如果在第三象限内有一点P(﹣1,m),请用含m的式子表示四边形AOPB的面积;
(3)在(2)的条件下,是否存在点P,使四边形AOPB的面积是△ABO面积的2倍?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是等边△ABC的AB边上的一动点(不与端点A、B重合),以CD为一边向上作等边△EDC,连接AE.
(1)无论D点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;
(2)D点在运动过程中,直线AE与BC始终保持怎样的位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ACD中,AD=9,CD=3,△ABC中,AB=AC.
(1)如图1,若∠CAB=60°,∠ADC=30°,在△ACD外作等边△ADD′
①求证:BD=CD′;
②求BD的长.
(2)如图2,若∠CAB=90°,∠ADC=45°,求BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com