【题目】如图,已知抛物线y=﹣+bx+c的图象经过点A(﹣1,0)和点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式.
(2)已知点F(0,),当点P在x轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1);(2) m=3和m=1+; (3)存在,点Q的坐标为(3,2)或(﹣1,0)
【解析】
(1)利用待定系数法确定函数解析式;
(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,分两种情况,①当点P在线段AB上时②当P在AB的延长线上时,分别列出关于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得=,再证△MBQ∽△BPQ得,即 ,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.
(1)将点A(﹣1,0)和点C(0,2)代入y=﹣x2+bx+c中,得 .
解得 .
则该抛物线解析式为:;
(2) 由题意知点D坐标为(0,﹣2),
∵点B是抛物线与x轴正半轴的交点,即,
解得x=4或x=-1(舍去),
∴B坐标为(4,0);
设直线BD解析式为y=kx+b,
将B(4,0)、D(0,﹣2)代入,得: ,
解得: ,
∴直线BD解析式为y=x﹣2,
分以下两种情况:
①当点P在线段AB上时,
∵QM⊥x轴,P(m
∴Q(m,﹣m2+m+2)、M(m,m﹣2),
则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,
∵F(0,)、D(0,﹣2),
∴DF=,
∵QM∥DF,
∴当﹣m2+m+4=时,四边形DMQF是平行四边形,
解得:m=﹣1或m=3,
∵m>0,
∴m=3;
即当m=3时,四边形DMQF是平行四边形;
②当P在AB的延长线上时,
∵QM⊥x轴,P(m,0)(m>0),
∴Q(m,﹣m2+m+2)、M(m,m﹣2),
∴QM=m﹣2﹣(﹣m2+m+2)=m2﹣m﹣4,
∵F(0,)、D(0,﹣2),
∴DF=,
∵QM∥DF,
∴当m2﹣m﹣4=时,四边形DMQF是平行四边形,
解得m=,
∵m>0,
∴m=1+;
即当m=1+时,四边形DMQF是平行四边形;
综上所述,当m=3和m=1+时,四边形DMQF是平行四边形;
(3)如图所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下两种情况:
①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
则 ,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴ ,即 ,
解得:m1=3、m2=4,
当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
∴m=3,点Q的坐标为(3,2);
②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
此时m=﹣1,点Q的坐标为(﹣1,0);
综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.
(1)直接写出y与x之间的函数关系式;
(2)如果该超市销售这种商品每天获得3900元的利润,那么该商品的销售单价为多少元?
(3)设每天的总利润为w元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?______;(填“是”或“否”)请简述你的理由_______.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆圆O的直径,C是弧AB的中点,M是弦AC的中点,CH⊥BM,垂足为H.求证
(1)∠AHO=90°
(2)求证:CH=AHOH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,若CD=5,以D为圆心,DC长为半径作⊙D交CA的延长线于E,过D作DF⊥AC,垂足为F,且DF=3.
(1)求证:BC是⊙D的切线;
(2)求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】郑奶奶提着篮子去农贸市场买鸡蛋,摊主按郑奶奶的要求,用电子秤称了5千克鸡蛋,郑奶奶怀疑重量不对,把鸡蛋放入自带的质量为0.6千克的篮子中(篮子质量准确),要求放在电子秤上再称一遍,称得为5.75千克,老板客气地说:“除去篮子后为5.15千克,老顾客啦,多0.15千克就算了”,郑奶奶高兴地付了钱,满意地回家了。以下说法正确的是( )
A.郑奶奶赚了,鸡蛋的实际质量为5.15千克
B.郑奶奶亏了,鸡蛋的实际质量为4千克
C.郑奶奶亏了,鸡蛋的实际质量为4.85千克
D.郑奶奶不亏也不赚,鸡蛋的实际质量为5千克
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,中,,将扇形按图1摆放,使扇形的半径、分别与、重合,.
如图2,若不动,让扇形绕点逆时针旋转一周,连接线段、,设旋转角为.
发现:直接写出、的数量关系.
探究:若
(1)扇形绕到点的左侧,当时,旋转角______°;
(2)扇形绕到点的右侧,当与相切时,求;
(3)若点是弧上任意一点,在扇形绕点逆时针转过程中,当的面积最大时,直接写出的度数;
延伸:如图3,若,当、、三点共线时,直接写出线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com