精英家教网 > 初中数学 > 题目详情

如图,用一根6m长的铝合金材料,做一个可分为上下两部分矩形窗框,求长和宽各是多少时,才能使通过的光线最多?

答案:
解析:

  解析:设框子的长为y m,宽为x m,

  矩形面积为S m2,则3x+2y=6

  y=-x+3,

  ∴S=xy=(-x+3)x

  =-x2+3x

  ∵-<0 ∴S有最大值.

  ∴当x=-=1时,S最大.

  此时y=-×12+3=-+3=

  答:当长为m,宽为1m时,通过的光线最多.

  点评:本题是考查二次函数的应用,除了考查二次函数的性质,还考查了解决实际问题的能力.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据:
3.36
≈1.8,
3.64
≈1.9,
4.39
≈2.1)
精英家教网

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》常考题集(18):2.6 何时获得最大利润(解析版) 题型:解答题

如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据:≈1.8,≈1.9,≈2.1)

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》常考题集(19):6.4 二次函数的应用(解析版) 题型:解答题

如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据:≈1.8,≈1.9,≈2.1)

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》常考题集(19):20.5 二次函数的一些应用(解析版) 题型:解答题

如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据:≈1.8,≈1.9,≈2.1)

查看答案和解析>>

同步练习册答案