精英家教网 > 初中数学 > 题目详情

【题目】如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是

【答案】60°
【解析】解:∵△COD是△AOB绕点O顺时针旋转40°后得到的图形,
∴∠AOC=∠BOD=40°,AO=CO,
∵∠AOD=90°,
∴∠BOC=90°﹣40°×2=10°,
∠ACO=∠A= (180°﹣∠AOC)= (180°﹣40°)=70°,
由三角形的外角性质得,∠B=∠ACO﹣∠BOC=70°﹣10°=60°.
故答案为:60°.
根据旋转的性质可得∠AOC=∠BOD=40°,AO=CO,再求出∠BOC,∠ACO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2
(2)能否使所围矩形场地的面积为810m2 , 为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD,把BCD沿BD翻折,得BDG,BG,AD所在的直线交于点E,过点DDFBEBC所在直线于点F.

(1)如图1,AB<AD,

①求证:四边形BEDF是菱形;

②若AB=4,AD=8,求四边形BEDF的面积;

(2)如图2,若AB=8,AD=4,请按要求画出图形,并直接写出四边形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把a、b两个数中较小的数记作min{a,b},直线y=kx﹣k﹣2(k<0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列语句,设适当的未知数,列出二元一次方程:

甲数比乙数的倍少

甲数的倍与乙数的倍的和是

甲数的与乙数的的差是

甲数与乙数的和的倍比乙数与甲数差的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程.

(1)试证明:无论取何值此方程总有两个实数根;

(2)若原方程的两根满足,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:

(1)EH=FH;
(2)∠CAB=2∠CDH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2
(1)当t=1秒时,S的值是多少?
(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.

查看答案和解析>>

同步练习册答案