精英家教网 > 初中数学 > 题目详情
(2005•金华)如图,在直角坐标系中,点M在y轴的正半轴上,⊙M与x轴交于A,B两点,AD是⊙M的直径,过点D作⊙M的切线,交x轴于点C.已知点A的坐标为(-3,0),点C的坐标为(5,0).
(1)求点B的坐标和CD的长;
(2)过点D作DE∥BA,交⊙M于点E,连接AE,求AE的长.

【答案】分析:(1)A点坐标为(-3,0),则B点坐标为(3,0),再根据点C的坐标为(5,0),就可以求出BC与AC的长,根据切割线定理得到CD2=CB•CA,就可以求出CD的长.
(2)根据DE∥BA,得到=,所以AE=DB;因而就可以把求AE的问题转化为求BD的问题,在直角△BDC中,根据勾股定理就可以求得.
解答:解:(1)∵MO⊥AB,
∴OA=OB.
∵A点坐标为(-3,0),
∴B点坐标为(3,0);(2分)
∵CD是⊙M的切线,
∴CD2=CB•CA=2×8=16,
∴CD=4.(3分)

(2)∵AD是直径,
∴DB⊥AB,
∴BD===2;(2分)
∵DE∥BA,
=
∴AE=DB,
∴AE=2.(2分)
点评:本题主要考查了切割线定理,并且考查了同圆或等圆中相等的弧所对的弦相等.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2005•金华)如图,抛物线y=ax2+bx+c经过点O(0,0),A(4,0),B(5,5).点C是y轴负半轴上一点,直线l经过B,C两点,且tan∠OCB=
(1)求抛物线的解析式;
(2)求直线l的解析式;
(3)过O,B两点作直线,如果P是直线OB上的一个动点,过点P作直线PQ平行于y轴,交抛物线于点Q.问:是否存在点P,使得以P,Q,B为顶点的三角形与△OBC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年浙江省金华市中考数学试卷(解析版) 题型:解答题

(2005•金华)如图,抛物线y=ax2+bx+c经过点O(0,0),A(4,0),B(5,5).点C是y轴负半轴上一点,直线l经过B,C两点,且tan∠OCB=
(1)求抛物线的解析式;
(2)求直线l的解析式;
(3)过O,B两点作直线,如果P是直线OB上的一个动点,过点P作直线PQ平行于y轴,交抛物线于点Q.问:是否存在点P,使得以P,Q,B为顶点的三角形与△OBC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《相交线与平行线》(01)(解析版) 题型:填空题

(2005•金华)如图,直线a、b被直线l所截,a∥b,如果∠1=50°,那么∠2=    度.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2005•金华)如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2.过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H.设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切.问满足条件的⊙O有几个?并求出其中一个圆的半径.

查看答案和解析>>

同步练习册答案