精英家教网 > 初中数学 > 题目详情
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.

【答案】分析:(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;
(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
②分三种情况讨论可知a与b满足的数量关系式.
解答:解:(1)①∵四边形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足为O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,
∴四边形AFCE为平行四边形,
又∵EF⊥AC,
∴四边形AFCE为菱形,
②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,
由勾股定理得42+(8-x)2=x2
解得x=5,
∴AF=5cm.

(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;
同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.
因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,
解得
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,秒.

②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.
分三种情况:
i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;
ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;
iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.
综上所述,a与b满足的数量关系式是a+b=12(ab≠0).

点评:本题综合性较强,考查了矩形的性质、菱形的判定与性质、勾股定理、平行四边形的判定与性质,注意分类思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:矩形ABCD中,AB=1,点M在对角线AC上,直线l过点M且与AC垂直,与AD相交于点E.
(1)如果直线l与边BC相交于点H(如图1)AM=
1
3
AC且AD=a,求的AE长(用含a的代数式表示);
(2)在(1)中,直线l把矩形分成两部分的面积比为2:5,求a的值;
(3)若AM=
1
4
AC,且直线l经过点B(如图2),求AD的长;
(4)如果直线l分别与边AD,AB相交于点E,F,AM=
1
4
AC,设AD的长为x,△AEF的面积为y,求y与x的函数关系式,并指出x的取值范围(求x的取值范围可不写过程).精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:矩形ABCD中,AD=2,点E、F分别在边CD、AB上,且四边形AECF是菱形精英家教网,tan∠DAE=
12
.求:
(1)DE的长;
(2)菱形AECF的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知在矩形ABCD中,AB=3,BC=6,如果以AD为直径作圆,那么与这个圆相切的矩形的边共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在矩形ABCD中.
(1)设矩形的面积为6,AD=y,AB=x(0<x≤6),写出y与x的函数关系,并在直角坐标系中画出此函数的图象.
(2)如图矩形纸片ABCD,AB=4,AD=3.折叠纸片使得AD边与对角线BD重合,折痕为DG,点A落在A′处,求△A′BG的面积与矩形ABCD的面积的比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连结AF、CF.
(1)若AB=3,AD=4,求CF的长;
(2)求证:∠ADB=2∠DAF.

查看答案和解析>>

同步练习册答案