2£®Ä³Ð¡ÇøΪÁ˽â¾öÍ£³µÄѵÄÎÊÌ⣬¾ö¶¨Í¶×ʽ¨Í£³µ³¡£¬¸ù¾Ý¶Ô¼×ÒÒÁ½¹¤³Ì¶ÓµÄÁ˽â»ñµÃÈçÏÂÐÅÏ¢£º¼×¡¢ÒÒÁ½¹¤³Ì¶ÓÿÌìÐèÊ©¹¤·Ñ·Ö±ðΪ1ÍòÔªºÍ0.6ÍòÔª£®Èô¼×¶Óµ¥¶ÀÍê³ÉÕâÏ³ÌÐèÒª30Ì죬ÈôÒÒ¶ÓÏÈ×öÊ®ÌìÊ£ÏµĹ¤³ÌÔÙÓɼ×ÒÒÁ½¶ÓºÏ×÷14Ìì²ÅÄÜÍê³É£®
£¨1£©Èô°²ÅÅÒÒ¶Óµ¥¶ÀÍê³ÉÕâÏ³ÌÐèÒª¶àÉÙÌ죿
£¨2£©´ÓËõ¶Ì¹¤ÆÚ½ÚÔ¼×ʽðÁ½·½Ã濼ÂÇ£¬¾ö¶¨ÏÈÓÉÒÒ¶À×öÈô¸ÉÌìºó£¬Ê£ÏµĹ¤³ÌÔÙÓɼ×ÒÒÁ½¶ÓºÏ×÷Íê³É£¬ÄÇôÒÒ¹¤³Ì¶ÓÖÁÉÙÒªµ¥¶ÀÊ©¹¤¶àÉÙÌìºó£¬²ÅÄÜʹʩ¹¤·Ñ²»³¬¹ý28ÍòÔª£®

·ÖÎö £¨1£©Ê×ÏÈÉèÒÒµ¥¶ÀÍê³ÉÐèÒªxÌ죬¸ù¾ÝµÈÁ¿¹Øϵ£ºÒҵŤ×÷ЧÂÊ¡Á10Ìì+¼×ÒÒºÏ×÷µÄ¹¤×÷ЧÂÊ¡Á14Ìì=1¿ÉµÃ·Öʽ·½³Ì£¬½â·½³Ì¿ÉµÃ´ð°¸£»
£¨2£©Éè¼×¹¤³Ì¶ÓÖÁÉÙÒªµ¥¶ÀÊ©¹¤aÌìºó£¬ÔòÊ£Ó๤×÷Á¿ÊÇ£º1-$\frac{1}{45}$a£¬ÓÉÁ½¶ÓºÏ×÷ÐèÒªµÄÌìÊýÊÇ£º$\frac{1-\frac{1}{45}a}{\frac{1}{30}+\frac{1}{45}}$£¬¸ù¾ÝÌâÒâ¿ÉµÃ²»µÈ¹Øϵ£ºÒÒµ¥¶À¸ÉµÄÌìÊý¡Á0.6ÍòÔª+Á½¶ÓºÏ×÷µÄÌìÊý¡Á£¨1+0.6£©ÍòÔª¡Ü28ÍòÔª£¬ÓÉ´ËÁгö²»µÈʽ£¬½â²»µÈʽ¼´¿É£®

½â´ð ½â£º£¨1£©ÉèÈô°²ÅÅÒÒ¶Óµ¥¶ÀÍê³ÉÕâÏ³ÌÐèÒªxÌ죬ÓÉÌâÒâµÃ£º
$\frac{10}{x}$+£¨$\frac{1}{x}$+$\frac{1}{30}$£©¡Á14=1£¬
½âµÃ£ºx=45£¬
¾­¼ìÑ飺x=45ÊÇÔ­·Öʽ·½³ÌµÄ½â£¬
´ð£º°²ÅÅÒÒ¶Óµ¥¶ÀÍê³ÉÕâÏ³ÌÐèÒª45Ì죻

£¨2£©ÉèÒÒ¶À×÷aÌìºó£¬ÔÙÓɼס¢ÒÒÁ½¶ÓºÏ×÷Íê³É´ËÏ³Ì£¬
ÓÉÌâÒâµÃ£º0.6¡Áa+£¨1+0.6£©£¨$\frac{1-\frac{1}{45}a}{\frac{1}{30}+\frac{1}{45}}$£©¡Ü28£¬
½âµÃ£ºa¡Ý20£®
´ð£º¼×¹¤³Ì¶ÓÖÁÉÙÒªµ¥¶ÀÊ©¹¤20Ììºó£¬ÔÙÓɼס¢ÒÒÁ½¶ÓºÏ×÷Ê©¹¤Íê³É´ËÏÍê³ÉÊ£ÏµĹ¤³Ì£¬²ÅÄÜʹʩ¹¤·ÑÓò»³¬¹ý28ÍòÔª£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁË·Öʽ·½³ÌÓëÒ»ÔªÒ»´Î²»µÈʽµÄÓ¦Ó㬹ؼüÊÇÊ×ÏÈŪÇåÌâÒ⣬ÕÒ³öÌâÄ¿ÖеĵÈÁ¿¹Øϵ»ò²»µÈ¹Øϵ£¬Áгö·½³Ì»ò²»µÈʽ£¬´ËÌâÓõ½µÄ¹«Ê½ÊÇ£º¹¤×÷ЧÂÊ¡Á¹¤×÷ʱ¼ä=¹¤×÷Á¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÒÑÖªµãPÊÇÏ߶ÎABµÄ»Æ½ð·Ö¸îµã£¬ÇÒAP£¾PB£¬ÉèÒÔAPΪ±ß³¤µÄÕý·½ÐÎACDPµÄÃæ»ýΪS1£¬ÒÔBF£¬ABµÄ³¤ÎªÁڱߵľØÐÎAEFBµÄÃæ»ýΪS2£¬BF=PB£¬ÊÔÎÊS1ÓëS2ÓкιØϵ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¼ÆËã-2m2n+m2nµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®-1B£®2C£®-m2nD£®-3m4n2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®»¯¼ò·Öʽ$\frac{{a}^{2}}{a-b}$+$\frac{{b}^{2}}{b-a}$µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®a+bB£®a-bC£®$\frac{a+b}{a-b}$D£®$\frac{a-b}{a+b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÒ»¸ö²»Í¸Ã÷µÄºÐ×ÓÀïÓÐ3¸ö·Ö±ð±êÓÐÊý×Ö5£¬6£¬7µÄСÇò£¬ËüÃdzýÊý×ÖÍâÆäËû¾ùÏàͬ£®³ä·ÖÒ¡ÔȺó£¬ÏÈÃþ³ö1¸öÇò²»·Å»Ø£¬ÔÙÃþ³ö1¸öÇò£¬ÄÇôÕâÁ½¸öÇóÉϵÄÊý×ÖÖ®ºÍΪÆæÊýµÄ¸ÅÂÊÊǶàÉÙ£¿£¨ÓÃÊ÷״ͼ»òÁÐ±í·¨Çó½â£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®a2+b2=£¨a+b£©2+£¨-2ab£©=£¨a-b£©2+2ab£»
x2+$\frac{1}{{x}^{2}}$=£¨x+$\frac{1}{x}$£©2-2=£¨x-$\frac{1}{x}$£©2+2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆË㣺
£¨1£©$\frac{2}{3}\sqrt{6}$•$\frac{3}{4}\sqrt{24}$£»
£¨2£©£¨3$\sqrt{48}$-2$\sqrt{27}$£©¡Â$\sqrt{3}$£»
£¨3£©$\sqrt{10}$£¨3$\sqrt{\frac{2}{5}}$-$\sqrt{\frac{5}{2}}$£©£»
£¨4£©3$\sqrt{12}$¡Â£¨3$\sqrt{\frac{1}{3}}$-2$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬Rt¡÷ABCÖУ¬¡ÏC=90¡ã£¬ÒÔACΪֱ¾¶µÄ¡ÑO½»Ð±±ßABÓÚE£¬OD¡ÎAB£®ÇóÖ¤£º
£¨1£©EDÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©BC•DE=BE•OD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁÐÔËËãÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®x2+x4=x6B£®£¨-x3£©2=x6C£®2a+3b=5abD£®x6¡Âx3=x2£¨x¡Ù0£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸