精英家教网 > 初中数学 > 题目详情
如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于   
【答案】分析:凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.
解答:解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.
∵六边形ABCDEF的六个角都是120°,
∴六边形ABCDEF的每一个外角的度数都是60°.
∴△AHF、△BGC、△DPE、△GHP都是等边三角形.
∴GC=BC=3,DP=DE=2.
∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.
∴六边形的周长为1+3+3+2+4+2=15.
故答案为15.
点评:本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图①:四边形ABCD为正方形,M、N分别是BC和CD中点,AM与BN交于点P,
(1)请你用几何变换的观点写出△BCN是△ABM经过什么几何变换得来的;
(2)观察图①,图中是否存在一个四边形,这个四边形的面积与△APB的面积相等?写出你的结论.(不必证明)
(3)如图②:六边形ABCDEF为正六边形,M、N分别是CD和DE的中点,AM与BN交于点P,问:你在(2)中所得的结论是否成立?若成立,写出结论并证明,若不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD是由四个边长为l的正六边形所围住,则四边形ABCD的面积是(  )
A、
3
4
B、
3
2
C、1
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:四边形ABCD中,AD∥BC,∠B=∠C,AD=a(a>0),BC=8,AD、BC间的距离为2
3
,有一边长为2的等边△EFG,在四边形ABCD内作任意运动,在运动过程中始终保持EF∥BC.记△EFG在四边形ABCD内部运动过程中“能够扫到的部分”的面积为S.
(1)如图①所示,当a=8时,△EFG在四边形ABCD内部运动过程中“能够扫到的部分”即为六边形HIBCJK,则S=
 

(2)如图②所示,当a=10时,求S的值;
(3)如图③所示,当a=2时,求S的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的内角和为2×180°=360°,五边形ABCDE的内角和为3×180°=540°,…由此可见:
(1)六边形的内角和为
720
720
度;
(2)n边形的内角和为
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是由四个边长为1的正六边形所围住,则四边形ABCD的面积是(     )
A.1B.2C.D.

查看答案和解析>>

同步练习册答案