【题目】如图1,一张△ABC纸片,点M、N分别是AC、BC上两点.(均只需写出结论即可)
(1)若沿直线MN折叠,使C点落在BN上,则∠AMC′与∠ACB的数量关系是 .
(2)若折成图2的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系是 .
(3)若折成图3的形状,猜想∠AMC′、∠BNC′和∠ACB的数量关系是 .
(4)将上述问题推广,如图4,将四边形ABCD纸片沿MN折叠,使点C、D落在四边形ABNM的内部时,∠AMD′+∠BNC′与∠C、∠D之间的数量关系是 .
【答案】(1) ∠AMC′=2∠ACB;(2)∠AMC′+∠BNC′=2∠ACB;(3)∠AMC′-∠BNC′=2∠ACB; (4)∠AMD′+∠BNC′=2(∠C+∠D-180°).
【解析】试题分析:(1)根据折叠性质和三角形的外角定理得出结论;
(2)先根据折叠得:∠CMN=∠C′MN,∠CNM=∠C′NM,由两个平角∠CMA和∠CNB得:∠AMC′+∠′BNC′等于360°与四个折叠角的差,化简为结果;
(3)利用两次外角定理得出结论;
(4)与(2)类似,先由折叠得:∠DMN=∠D′MN,∠CNM=∠C′NM,再由两平角的和为360°得:∠AMD′+∠BNC′=360°﹣2∠DMN﹣2∠CNM,根据四边形的内角和得:∠DMN+∠CNM=360°﹣∠C﹣∠D,代入前式可得结论.
试题解析:解:(1)由折叠得:∠ACB=∠MC′C,∵∠AMC′=∠ACB+∠MC′C,∴∠AMC′=2∠ACB;
故答案为:∠AMC′=2∠ACB;
(2)猜想:∠AMC′+∠BNC′=2∠ACB,理由是:
由折叠得:∠CMN=∠C′MN,∠CNM=∠C′NM,∵∠CMA+∠CNB=360°,∴∠AMC′+∠′BNC′=360°﹣∠CMN﹣∠C′MN﹣∠CNM﹣∠C′NM=360°﹣2∠CMN﹣2∠CNM,∴∠AMC′+∠BNC′=2(180°﹣∠CMN﹣∠CNM)=2∠ACB;
(3)∵∠AMC′=∠MDC+∠C,∠MDC=∠C′+∠BNC′,∴∠AMC′=∠C′+∠BNC′+∠C,∵∠C=∠C′,∴∠AMC′=2∠C+∠BNC′,∴∠AMC′﹣∠BNC′=2∠ACB;
(4)由折叠得:∠DMN=∠D′MN,∠CNM=∠C′NM,∵∠DMA+∠CNB=360°,∴∠AMD′+∠BNC′=360°﹣2∠DMN﹣2∠CNM,∵∠DMN+∠CNM=360°﹣∠C﹣∠D,∴∠AMD′+∠BNC′=360°﹣2(360°﹣∠C﹣∠D)=2(∠C+∠D-180°),故答案为:∠AMD′+∠BNC′=2(∠C+∠D﹣180°).
科目:初中数学 来源: 题型:
【题目】如图,数轴上的点A、O、B、C、D分别表示﹣3、0、2.5、5、﹣6,回答下列问题.
(1)O、B两点间的距离是 .
(2)A、D两点间的距离是 .
(3)C、B两点间的距离是 .
(4)请观察思考,若点A表示数m,且m<0,点B表示数n,且n>0,那么用含m,n的代数式表示A、B两点间的距离是 .
(5)根据(1)—(4)中点表示的数与两点间的距离之间的关系,归纳:若点A表示数a,点B表示数b,那么A、B两点间的距离是 (用含a、b的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新疆近年旅游业发展快速,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道:2016年全疆共接待游客3354万人次,将3354万用科学计数法表示为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分为四类(A.特别好,B.好,C.一般,D.较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:
(1)本次调查中,王老师一共调查了________名学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)假定全校各班实施新课程改革效果一样,全校共有学生2400人,请估计该校新课程改革效果达到A类的有多少学生;
(4)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com