精英家教网 > 初中数学 > 题目详情
(2012•崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于(  )
分析:延长BA交直线a于M,根据平行线性质求出∠BMC,根据三角形外角性质得出∠ACM+∠CMA=∠BAC,代入求出即可.
解答:解:
延长BA交直线a于M,
∵a∥b,∠ABF=25°,
∴∠CMB=∠ABF=25°,
∵∠ACM+∠CMA=∠BAC,∠BAC=90°,
∴∠ACE=90°-25°=65°,
故选C.
点评:本题考查了平行线的性质和三角形的外角性质,注意:两直线平行,内错角相等,三角形的一个外角等于和它不相邻的两个内角的和.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•崇左)如图,Rt△AOB放置在坐标系中,点A的坐标是(1,0),点B的坐标是(0,2),把Rt△AOB绕点A按顺时针方向旋转90度后,得到Rt△AO′B′,则B′的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇左)如图,已知∠XOY=90°,等边三角形PAB的顶点P与O点重合,顶点A是射线OX上的一个定点,另一个顶点B在∠XOY的内部.
(1)当顶点P在射线OY上移动到点P1时,连接AP1,请用尺规作图;在∠XOY内部作出以AP1为边的等边△AP1B1(要求保留作图痕迹,不要求写作法和证明);
(2)设AP1交OB于点C,AB的延长线交B1P1于点D.求证:△ABC∽△AP1D;
(3)连接BB1,求证:∠ABB1=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇左)如图,有四张背面相同的纸牌A、B、C、D其正面分别画有正三角形、圆、平行四边形、正五边形,某同学把这四张牌背面向上洗匀后摸出一张,放回洗匀再摸出一张.
(1)请用树状图或表格表示出摸出的两张牌所有可能的结果;
(2)求摸出两张牌的牌面图形都是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇左)如图所示,抛物线y=ax2+bx+c(a≠0)的顶点坐标为点A(-2,3),且抛物线y=ax2+bx+c与y轴交于点B(0,2).
(1)求该抛物线的解析式;
(2)是否在x轴上存在点P使△PAB为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点P是x轴上任意一点,则当PA-PB最大时,求点P的坐标.

查看答案和解析>>

同步练习册答案