精英家教网 > 初中数学 > 题目详情
2.解方程组:
(1)$\left\{\begin{array}{l}{x+y=5}\\{2x+y=8}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-5y=7}\\{3x+2y=1}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x+y=5①}\\{2x+y=8②}\end{array}\right.$,
②-①得:x=3,
把x=3代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-5y=7①}\\{3x+2y=1②}\end{array}\right.$,
①×2+②×5得:19x=19,
解得:x=1,
把x=1代入①得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.解答下列各题:
(1)计算:$\sqrt{(-\frac{5}{2})^{2}}$-$\root{3}{-2\frac{10}{27}}$+(2017-π)0
(2)求x的值:$\frac{1}{2}$(x-2)3-32=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程组:
(1)$\left\{\begin{array}{l}{3(x-1)=y+5}\\{5(y-1)=3(x+5)}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{x+1}{3}=1}\\{3x+2y=10}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC中,AB=AC,以AB为直径的⊙O交AC,BC分别于点E,D两点,连结ED,BE.
(1)求证:$\widehat{DE}$=$\widehat{BD}$.
(2)若BC=6.AB=5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1
(2)请画出将△ABC关于x轴对称的图形△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,某人在山坡坡脚A处测得电视塔BC塔尖B的仰角为60°,沿山坡AM走到D处测得塔尖B的仰角为30°,已知AC为100米,山坡坡度i=1:3,C、A、E三点在同一直线上.求此人所在位置点D的铅直高度DE.(结果保留根号形式)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:$\frac{-\sqrt{54}}{\sqrt{18}}$-$\frac{\sqrt{9}}{\sqrt{8}}$×$\sqrt{10}$+$\sqrt{12}$+$\sqrt{1\frac{1}{4}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,点A的坐标是(-3,0),点B的坐标是(0,4),动点C从点A出发沿射线AB方向以每秒1个单位的速度运动,过点C作CD⊥AB,交x轴于点D,点D关于y轴的对称点为D′,以DC,DD′为边作?CDD′E,设点C运动时间为t秒(t>0).
(1)当D在线段AO上时,用含t的代数式表示DD′;
(2)以AD为直径作⊙P,若点C在整个运动过程中,⊙P与△DD′E的边所在的直线相切,请求出所有满足条件的t的值;
(3)连接BD,△ABD与?CDD′E重叠部分的面积记为S1,△CDD′E的面积为S2,若$\frac{{S}_{1}}{{S}_{2}}$>$\frac{1}{4}$,求t的取值范围(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)计算:|-3|-(-1)2017-12×($\frac{1}{3}$-$\frac{1}{4}$)+$\sqrt{25}$
(2)已知,$\sqrt{a}$=3,$\root{3}{-b}$=2,试求$\sqrt{a+b}$的值.

查看答案和解析>>

同步练习册答案