【题目】有这样一个问题:探究函数y= 的图象与性质. 下面是小文的探究过程,请补充完整:
(1)函数y= 的自变量x的取值范围是;
(2)如表是y与x的几组对应值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … |
y | … | ﹣ | ﹣ | ﹣ | 0 | 2 |
|
|
| … |
如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.
①观察图中各点的位置发现:点A1和B1 , A2和B2 , A3和B3 , A4和B4均关于某点中心对称,则该点的坐标为;
②小文分析函数y= 的表达式发现:当x<1时,该函数的最大值为0,则该函数图象在直线x=1左侧的最高点的坐标为;
(3)小文补充了该函数图象上两个点( ,﹣ ),( , ), ①在上图中描出这两个点,并画出该函数的图象;
②写出该函数的一条性质: .
【答案】
(1)x≠1
(2)(1,1);(0,0)
(3);当x>1时,该函数的最小值为1
【解析】解:(1)依题意得:2x﹣2≠0,解得x≠1,故答案是:x≠1;(2)①点A1和B1 , A2和B2 , A3和B3 , A4和B4均关于某点中心对称,A1(0,0),B2(2,2),∴中心点点坐标为(1,1);②∵当x<1时,该函数的最大值为0, ∴该函数图象在直线x=1左侧的最高点的坐标为(0,0);所以答案是(1,1);(0,0);(3)②该函数的性质:(ⅰ)当x<0时,y随x的增大而增大;
当0≤x<1时,y随x的增大而减小;当1<x<2时,y随x的增大而减小;
当x≥2时,y随x的增大而增大.(ⅱ)函数的图象经过第一、三、四象限.
(ⅲ)函数的图象与直线x=1无交点,图象由两部分组成.(ⅳ)当x>1时,该函数的最小值为1.所以答案是当x>1时,该函数的最小值为1.
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为m的正三角形,D,E,F分别在边AB,BC,CA上,AE,BF交于点P,BF,CD交于点Q,CD,AE交于点R,若 = = =k(0<k< ).
(1)求∠PQR的度数;
(2)求证:△ARD∽△ABE;
(3)求△PQR与△ABC的面积之比(用含k的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。
⑴连接AQ、CP交于点M,在点P、Q运动的过程中,∠CMQ的大小变化吗?若变化,则说明理由,若不变,请直接写出它的度数;
⑵点P、Q在运动过程中,设运动时间为t,当t为何值时,△PBQ为直角三角形?
⑶如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ的大小变化吗?则说明理由;若不变,请求出它的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在做课本中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.
(1)请写出这种做法的理由.
(2)小明在此基础上又进行了如下操作和探究(如图3):
①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D.
②连接AD并延长交直线a于点B,请直接写出图3中所有与∠PAB相等的角.
(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,若P,Q为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“相关菱形”.图1为点P,Q的“相关菱形”的一个示意图.
已知点A的坐标为(1,4),点B的坐标为(b,0),
(1)若b=3,则R(﹣1,0),S(5,4),T(6,4)中能够成为点A,B的“相关菱形”顶点的是;
(2)若点A,B的“相关菱形”为正方形,求b的值;
(3)⊙B的半径为 ,点C的坐标为(2,4).若⊙B上存在点M,在线段AC上存在点N,使点M,N的“相关菱形”为正方形,请直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程3x2﹣kx+k﹣4=0.
(1)判断方程根的情况;
(2)若此方程有一个整数根,请选择一个合适的k值,并求出此时方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料: 由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.
据中国经济网2017年2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)
根据以上材料解答下列问题:
(1)补全折线统计图;
(2)根据材料提供的信息,预估 2017年位于北京市五环之内新建商品住宅成交量占比约 , 你的预估理由是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料: “共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.
Quest Mobile监测的M型与O型单车从2016年10月﹣﹣2017年1月的月度用户使用情况如表所示:
根据以上材料解答下列问题:
(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;
(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com