【题目】如图,一次函数y=kx+1(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC.
(1)求k和m的值;
(2)求点B的坐标;
(3)求△ABC的面积.
【答案】(1)k的值为1,m的值为2;(2)点B的坐标为(3,4);(3)△ABC的面积是.
【解析】
(1)将点代入一次函数和反比例函数的解析式计算即可得;
(2)先可得点B的横坐标,再将其代入一次函数解析式可求出纵坐标,即可得答案;
(3)如图(见解析),过点A作于点D,先求出点C的坐标,再利用A、B、C三点的坐标可求出BC、AD的长,从而可得的面积.
(1)是一次函数与反比例函数的公共点
解得:
故k的值为1,m的值为2;
(2)∵直线轴于点,且与一次函数的图象交于点B
∴点B的横坐标为3
把代入得:
故点B的坐标为;
(3)如图,过点A作于点D
依题意可得点C的横坐标为3
把代入得:
则
又因AD的长等于点N的横坐标减去点A的横坐标,即
则
故的面积是.
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年高一新生开始,某省全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考
(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)
(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,D是BC中点,E是AD中点,过点A作BC的平行线交CE的延长线于F,连接BF.
(1)判断并证明四边形AFBD的形状;
(2)当ΔABC满足什么条件时,四边形AFBD是矩形,证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为(r>0),若点P′在射线OP上(P′可以和射线端点重合),满足OP′+OP=2r,则称点P′是点P关于⊙O的“反演点”.
(1)当⊙O的半径为8时,
①若OP1=17,OP2=12,OP3=4,则P1,P2,P3中存在关于⊙O的反演点”的是 .
②点O关于⊙O的“反演点”的集合是 ,若P关于⊙O的“反演点在⊙O内,则OP取值范围是 ;
(2)如图2,△ABC中,∠ACB=90°,AC=BC=12,⊙O的圆心在射线CB上运动,半径为1.若线段AB上存在点P,使得点P关于⊙O的“反演点”P′在⊙O的内部,求OC的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;
(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;
(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com