分析 (1)连接FC并延长到BA上一点E,即为所求答案;
(2)利用解Rt△AEC求AE,解Rt△ACM,求AM,利用ME=AM-AE求出他行驶的距离.
解答 (1)如图所示:
汽车行驶到E点位置时,小明刚好看不到建筑物B;
(2)∵小明的视角为30°,A建筑物高25米,
∴AC=25,
tan30°=$\frac{AC}{AM}$=$\frac{\sqrt{3}}{3}$,
∴AM=25 $\sqrt{3}$,
∵∠AEC=45°,
∴AE=AC=25米,
∴ME=AM-AE=43.3-25=18.3(米).
答:他向前行驶了18.3米.
点评 本题考查了解直角三角形的基本方法,先分别在两个直角三角形中求相关的线段,再求差是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com