精英家教网 > 初中数学 > 题目详情

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a+2b+c>0 ③B点坐标为(4,0);④当x<-1时,y>0.其中正确的是

A.①②      B.③④     C.①④      D.②③ 

C.

解析试题分析::∵对称轴为x=1,
∴x=-=1,
∴-b=2a,
∴2a+b=0,故①正确;
∵抛物线与y轴交于负半轴,即x=0时,y<0,
又对称轴为x=1,
∴x=2时,y<0,
∴4a+2b+c<0,故②错误;
∵点A坐标为(-1,0),对称轴为x=1,
∴点B坐标为(3,0),故③错误;
由图象可知当x<-1时,y>0.故④正确.
故选C.
考点:1.二次函数图象与系数的关系;2.二次函数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系中,矩形OABC的对角线AC=12,tan∠ACO=

(1)求B、C两点的坐标;
(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线DE的解析式;
(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;        
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2
上述4个判断中,正确的是(  )

A.①② B.①④ C.①③④ D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有(      )个。

A.2个 B.3个 C.4个 D.5个 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(),则s()与t(s)的函数关系可用图像表示为(   )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为(  )

A.2 B.4 C.8 D.16

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知的图象如图所示,其对称轴为直线x=-1,与x轴的一个交点为(1,0),与y轴的交点在(0,2)与(0,3)之间(不包含端点),则下列结论正确的是(    )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是(    )
A.           B.
C.             D.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是(  )

A.有最小值-5、最大值0
B.有最小值-3、最大值6
C.有最小值0、最大值6
D.有最小值2、最大值6

查看答案和解析>>

同步练习册答案