精英家教网 > 初中数学 > 题目详情
精英家教网如图,在正方形ABCD中,两条对角线AC,BD交于点O.
(1)求∠AOB,∠OAB的度数;
(2)若正方形的边长为1,求AC的长度;
(3)图中共有多少个等腰直角三角形?
分析:(1)先根据正方形的对角线互相垂直得出∠AOB的度数,再由正方形的四个角都是直角并且每条对角线平分一组对角,可得出∠OAB的度数;
(2)根据勾股定理即可求出;
(3)根据正方形的四条边都相等,四个角都是直角及正方形的两条对角线相等且互相垂直平分,可得出△ABC、△ADC、△ABD、△CBD、△AOB、△BOC、△COD、△DOA都是等腰直角三角形.
解答:解:(1)∵正方形ABCD的对角线AC,BD互相垂直,
∴∠AOB=90°.
∵正方形ABCD的内角都是直角,
∴∠BAD=90°,
∵对角线AC平分∠BAD,
∴∠OAB=45°;

(2)∵正方形ABCD的四条边都相等,
∴BC=AB=1. 
在Rt△ABC中,AC=
AB2+BC2
=
12+12
=
2


(3)根据正方形的性质,可知图中共有8个等腰直角三角形.
点评:本题考查了正方形的性质及勾股定理,属于基础知识,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案