【题目】如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB =5,AC =4,则△ADF周长为( ).
A.7B.8C.9D.10
【答案】C
【解析】
根据角平分线的定义可得∠EBD=∠EBC,∠ECF=∠ECB,再根据两直线平行,内错角相等可得∠EBC=∠BED,∠ECB=∠CEF,然后求出∠EBD=∠DEB,∠ECF=∠CEF,再根据等角对等边可得ED=BD,EF=CF,即可得出DF=BD+CF;求出△ADF的周长=AB+AC,然后代入数据进行计算即可得解.
解:∵E是∠ABC,∠ACB平分线的交点,
∴∠EBD=∠EBC,∠ECF=∠ECB,
∵DF∥BC,
∴∠DEB=∠EBC,∠FEC=∠ECB,
∴∠DEB=∠DBE,∠FEC=∠FCE,
∴DE=BD,EF=CF,
∴DF=DE+EF=BD+CF,
即DE=BD+CF,
∴△ADF的周长=AD+DF+AF=(AD+BD)+(CF+AF)=AB+AC,
∵AB=5,AC=4,
∴△ADF的周长=5+4=9,
故选:C.
科目:初中数学 来源: 题型:
【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象与x轴交于(, 0)和(, 0), 其中,与轴交于正半轴上一点.下列结论:①;②;③a>b;④.其中正确结论的序号是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数是关于的二次函数,求:
满足条件的值;
为何值时,抛物线有最低点?求出这个最低点.这时,当为何值时,随的增大而增大?
为何值时,函数有最大值?最大值是多少?这时,当为何值时,随的增大而减小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(a,0),B(0,b),且a、b满足.
(1)填空:a= ,b= ;
(2)如图1,将ΔAOB沿x轴翻折得ΔAOC,D为线段AB上一动点,OE⊥OD交AC于点E,求S四边形ODAE。
(3)如图2,D为AB上一点,过点B作BF⊥OD于点G,交x轴于点F,点H为x轴正半轴上一点,∠BFO=∠DHO,求证:AF=OH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,和分别平分和的外角,一动点在上运动,过点作的平行线与和的角平分线分别交于点和点.
求证:当点运动到什么位置时,四边形为矩形,说明理由;
在第题的基础上,当满足什么条件时,四边形为正方形,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,点是边上的点(与,两点不重合),过点作,,分别交,于,两点,下列说法正确的是( )
A. 若,则四边形是矩形
B. 若垂直平分,则四边形是矩形
C. 若,则四边形是菱形
D. 若平分,则四边形是菱形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com