精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,∠C=90°,∠CAB的角平分线AD交BC于点D,过点D作DE⊥AD,交AB于点E.以AE为直径作⊙O.
(1)求证:BC是⊙O的切线;
(2)若AE=6,AC=,求△ADB的面积.

【答案】分析:(1)如图,连接OD,分别利用角平分线的性质和等腰三角形的性质可以得到∠CAD=∠ODA,然后利用平行线的判定证明OD∥AC,由此即可证明题目的结论;
(2)由(1)可得△ABC∽△OBD,设BE=x,则有=,可求出BE、OB,根据勾股定理可求出BD,那么得△ADB的面积=BD•AC.
解答:(1)证明:连接OD,如图.
∵AE为⊙O的直径,
∴∠ADE=90°,
∴D点在⊙O上.
∴OD=OA,
∴∠ADO=∠DAO.
又∵∠CAB的角平分线AD交BC于点D,
∴∠CAD=∠DAO,
∴∠CAD=∠ADO,
∴AC∥OD,而∠C=90°.
∴∠ODC=90°.
所以BC是⊙O的切线;

(2)解:由已知和(1)得:OD=OE=AE=3,
又AC∥OD(已证),
∴△ABC∽△OBD,
设BE=x,
则有=,即=
得:x=2,即BE=2,
∴OB=BE+OE=2+3=5,
在直角三角形OBD中,由勾股定理得:
BD===4,
所以△ADB的面积为BD•AC=×4×=
点评:此题考查的知识点是切线的判定与性质、角平分线的性质、圆周角定理及相似三角形的判定与性质,解题的关键是(1)利用角平分线的性质和等腰三角形的性质可以得到∠CAD=∠ODA;(2)通过证明三角形相似和运用勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案