精英家教网 > 初中数学 > 题目详情
18.如图,AD⊥BC,垂足为D,BD=DC,则图中全等的三角形共有(  )
A.1对B.2对C.3对D.4对

分析 利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.

解答 解:①△ABE≌△ACE
∵AB=AC,EB=EC,AE=AE
∴△ABE≌△ACE;
②△EBD≌△ECD
∵△ABE≌△ACE
∴∠ABE=∠ACE,∠AEB=∠AEC
∴∠EBD=∠ECD,∠BED=∠CED
∵EB=EC
∴△EBD≌△ECD;
③△ABD≌△ACD
∵△ABE≌△ACE,△EBD≌△ECD
∴∠BAD=∠CAD
∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED
∴∠ABC=∠ACB
∵AB=AC
∴△ABD≌△ACD
∴图中全等的三角形共有3对,
故选C

点评 本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.已知反比例函数的图象过点(2,-1).
(1)求这个函数的关系式,并画出图象.
(2)若点A(-5,m)在其图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象互相平行,且经过点A,则一次函数y=kx+b的解析式为y=2x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某校积极倡导学生展示自我,发展综合素质,在新学期举办的校园文化艺术节中,学生可以在舞蹈、器乐、声乐、小品、播音主持五个类别中挑选一项报名参加比赛,八年级学生小明从本年级学生各个类别的报名登记表中随机抽取了一部分学生的报名情况进行整理,并制作了如下不完整的条形统计图和扇形统计图,请解答下列问题:

(1)小明随机抽取了50名学生的报名情况进行整理,扇形统计图中,表示E类别部分的扇形的圆心角度数为14.4度;
(2)将条形统计图补充完整;
(3)小华认为如果知道八年级报名参加比赛的总人数,则根据小明制作的统计图就可以估算出八年级报名参加声乐比赛的人数.小明认为如果知道初中三个年级报名参加比赛的总人数,则根据自己制作的统计图也可以估算出整个初中年级报名参见声乐比赛的人数.你认为他俩的看法对吗?并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知一次函数y=kx+b的图象经过点(-2,1)和(0,3),求当x=4时的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,直线AB,CD相交于点O,OF平分∠AOE,OF⊥CD,垂足为O.
(1)写出图中所有与∠AOD互补的角;
(2)若∠AOE=120°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,直线AB∥CD,若∠B=24°,∠D=33°,则∠BED等于(  )
A.24°B.33°C.57°D.67°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算
(1)$\sqrt{14}$$÷\sqrt{6}$×$\sqrt{\frac{27}{2}}$;
(2)($\sqrt{0.5}$-2$\sqrt{\frac{1}{3}}$)-($\sqrt{\frac{1}{8}}$-$\sqrt{75}$);
(3)(7+4$\sqrt{3}$)(7-4$\sqrt{3}$)-($\sqrt{3}$-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知一次函数y=kx+b,k从2,-3中随机取一个值,b从1,-1,-2中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案