精英家教网 > 初中数学 > 题目详情

在△ABC中,D在AB上,且DE∥BC,数学公式,若△ABC的面积为9,则△ADE的面积是________.

1
分析:根据DE∥BC,可以求证△ADE∽△ABC,即可求得△ADE与△ABC面积的比值,即可解题.
解答:∵DE∥BC,
∴△ADE∽△ABC且相似比为1;3,
∴△ADE与△ABC的面积比为
△ABC的面积为9,则△ADE的面积为1,
故答案为 1.
点评:本题考查了相似三角形对应边比值相等的性质,考查了相似三角形的判定,本题中根据△ADE和△ABC对应比求其面积的比是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•鹰潭模拟)某校九年级(1)班数学兴趣小组开展了一次活动,过程如下:
如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小明将一块直角三角板的直角顶点放在斜边BC边的中点O上,从BC边开始绕点A顺时针旋转,其中三角板两条直角边所在的直线分别交AB、AC于点E、F.
(1)小明在旋转中发现:在图1中,线段AE与CF相等.请你证明小明发现的结论;
(2)小明将一块三角板中含45°角的顶点放在点A上,从BC边开始绕点A顺时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.当0°<α≤45°时,小明在旋转中还发现线段BD、CE、DE之间存在如下等量关系:
BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决:
小颖的方法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的方法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3).
请你从中任选一种方法进行证明;
(3)小明继续旋转三角板,在探究中得出:当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立.现请你继续探究:当135°<α<180°时(如图4),等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南平)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.
(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)
答:结论一:
AB=AC
AB=AC

结论二:
∠AED=∠ADC
∠AED=∠ADC

结论三:
△ADE∽△ACD
△ADE∽△ACD

(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此时BD的长.
(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)

查看答案和解析>>

科目:初中数学 来源:精编教材全解 数学 九年级上册 (配苏科版) 苏科版 题型:044

在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如图(1),仿上述的方法,按要求完成下列操作设计,并在规定位置画出图示.

(1)在△ABC中,增加条件________,沿着________一刀剪切后可以拼成矩形,剪切线与拼图画在图(2)的位置.

(2)在△ABC中,增加条件________,沿着________一刀剪切后可以拼成菱形,剪切线与拼图画在图(3)的位置.

(3)在△ABC中,增加条件________,沿着________一刀剪切后可以拼成正方形,剪切线与拼图画在图(4)的位置.

(4)在△ABC(AB≠AC)中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是:________.

然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图(5)的位置.

查看答案和解析>>

科目:初中数学 来源:2009年河北省中考数学试卷 题型:044

如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段ABBC相切于端点时刻的位置,⊙O的周长为c

阅读理解:

(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周.

(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿ABC滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2n°,⊙O在点B处自转周.

实践应用:

(1)在阅读理解的(1)中,若AB=2c,则⊙O自转________周;若AB=l,则⊙O自转________周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转________周;若∠ABC=60°,则⊙O在点B处自转________周.

(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿ABC滚动到⊙O4的位置,⊙O自转________周.

拓展联想:

(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由.

(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.

查看答案和解析>>

科目:初中数学 来源:2013年辽宁省辽阳市高级中等学校招生考试数学 题型:044

定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”

性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等,

理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD

应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O,

(1)求证:△AOB和△AOE是“友好三角形”;

(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积,

探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.

查看答案和解析>>

同步练习册答案