【题目】如图,在矩形中,,是边上一点,且.已知经过点,与边所在直线相切于点(为锐角),与边所在直线交于另一点,且,当边或所在的直线与相切时,的长是( )
A.1或3B.4或C.或D.4或12
【答案】D
【解析】
边BC所在的直线与⊙O相切时,过点G作GN⊥AB,垂足为N,可得EN=NF,由,得EG:EN=,依据勾股定理即可求得x的值,然后再次利用勾股定理求出半径r,根据计算即可;当边AD所在的直线与⊙O相切时,同理可求AB=4.
解:边BC所在的直线与⊙O相切时,
如图,切点为K,连接OK,过点G作GN⊥AB,垂足为N,
∴EN=NF,
又∵,
∴EG:EN=,
又∵GN=AD=8,
∴设EN=x,则GE=,
根据勾股定理得:,
解得:x=4,
∴GE=,
设⊙O的半径为r,由OE2=EN2+ON2,
得:r2=16+(8r)2,
∴r=5,
∴OK=NB=5,
∴EB=9,
又,即,
∴AB=12;
当边AD所在的直线与⊙O相切时,切点为H,连接OH,过点G作GN⊥AB,垂足为N,
同理,可得OH=AN=5,
∴AE=1,
又,
∴AB=4,
故选:D.
科目:初中数学 来源: 题型:
【题目】、两组卡片共张,中三张分别写有数字,,,中两张分别写有,.它们除了数字外没有任何区别.
随机地从中抽取一张,求抽到数字为的概率;
随机地分别从、中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
如果不公平请你修改游戏规则使游戏规则对甲乙双方公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】3月5日是学雷锋日,也是中国青年志愿者服务日.今年3月5日,某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道(记为A)”“去敬老院服务(记为B)”“到社区文艺演出(记为C)”三项.
(1)八年级计划在3月5日这天随机完成“青年志愿者”活动中的一项,求八年级完成的恰好是“去敬老院服务”的概率;
(2)九年级计划在3月5日这天随机完成“青年志愿者”活动中的两项,请用列表或画树状图法求九年级完成的恰好是“打扫街道”和“去敬老院服务”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答:
(1)每千克茶叶应降价多少元?
(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCO的边OC在x轴的正半轴上,边OA在y轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过其对角线OB的中点D,交边BC于点E,过点E作EG∥OB交x轴于点F,交y轴于点G、若点B的坐标是(8,6),则四边形OBEG的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,点D为BC中点,将△ABD绕点A按逆时针方向旋转50°,记点D在旋转过程中所经过的路径长为m,将△ABD绕点C按顺时针方向旋转100°,则点D在旋转过程中所经过的路径长为________.(用含m的代数式表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com