【题目】直线AB∥CD,点P在两平行线之间,点E. F分别在AB、CD上,连接PE,PF.尝试探究并解答:
(1)若图1中∠1=36°,∠2=63°,则∠3=___;
(2)探究图1中∠1,∠2与∠3之间的数量关系,并说明理由;
(3)如图2所示,∠1与∠3的平分线交于点P`,若∠2=α,试求∠EP`F的度数(用含α的代数式表示);
(4)如图3所示,在图2的基础上,若∠BEP与∠DFP的平分线交于点P,∠BEP与∠DFP的平分线交于点P…∠BEP 与∠DFP的平分线交于点P,且∠2=α,直接写出∠EPF的度数(用含α的代数式表示).
【答案】(1)27°;(2)∠2=∠1+∠3;(3)α;(4)α;
【解析】
(1)利用结论:∠2=∠1+∠3计算即可.
(2)结论:∠2=∠1+∠3.如图1中,作PM∥AB.利用平行线的性质证明即可.
(3)利用(2)中结论以及角平分线的定义即可解决问题.
(4)探究规律,利用规律解决问题即可.
(1)∠3=∠2∠1=63°36°=27°.
故答案为27°.
(2)结论:∠2=∠1+∠3.
理由:如图1中,作PM∥AB.
∵AB∥CD,AB∥PM,
∴PM∥CD,
∴∠1=∠MPE,∠3=∠MPF,
∴∠2=∠1+∠3.
(3)如图2中,
∵∠BEP+∠DFP=∠2=α,
∴∠EP′F=∠BEP′+∠DFP′= (∠BEP+∠DFP)=α.
(4)如图3中,
由(3)可知:∠P =α,∠P =() α,∠P =() α,…,∠P=α.
科目:初中数学 来源: 题型:
【题目】二次函数y=3x2+1和y=3(x﹣1)2 , 以下说法: ①它们的图象都是开口向上;
②它们的对称轴都是y轴,顶点坐标都是原点(0,0);
③当x>0时,它们的函数值y都是随着x的增大而增大;
④它们的开口的大小是一样的.
其中正确的说法有( )
A. 1个 B. 2 C. 3 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,,请确定点C的坐标,使得以A,B,C,O为顶点的四边形是平行四边形,则满足条件的所有点C的坐标是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,长度为y cm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:
(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
y | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 4.2 | 3.6 | 3.2 | 3.0 | 3.6 | 4.2 | 5.0 |
要求:补全表格中相关数值(保留一位小数);
(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当x约为__________时,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的图形M和点P(点P在M内部或M上),给出如下定义:
如果图形M上存在点Q,使得,那么称点P为图形M的和谐点.
已知点,,,.
(1)在点,,中,矩形的和谐点是_________________;
(2)如果直线上存在矩形的和谐点P,求出点P的横坐标t的取值范围;
(3)如果直线上存在矩形的和谐点E,F,使得线段上的所有点(含端点)都是矩形的和谐点,且,求出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有( )个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品的原销售价分别为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:
(1)如图1,在△ABC中,∠A=40°,△ABC的内角平分线交于点P,求∠P的度数;
(2)如图2,在△ABC中,∠A=90°,BP、BQ三等分∠ABC,CP、CQ三等分∠ACB,连结PQ,求∠BQP的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有若干个仅颜色不同的红球和黑球,现往一个不透明的袋子里装进4个红球和6个黑球.
(1)若先从袋子里取出m个红球(不放回),再从袋子里随机摸出一个球,将“摸到黑球”记为事件A. 若事件A为必然事件,则m= .
(2)若先从袋子里取出n个黑球,再放入2n个红球,若随机摸出一个球是红球的概率等于2/3,通过计算求n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com