精英家教网 > 初中数学 > 题目详情
精英家教网如图,ABCD为平行四边形,BE∥AC,DE交AC延长线于F点,交BE于E点.
(1)求证:DF=FE;
(2)若CF=
2
5
AC,AD⊥DE,AC⊥DC,DC=
10
,求BE的长.
分析:(1)延长DC交BE于点G,根据平行四边形的性质及判定可得到四边形ABGC是平行四边形,由平行四边形的性质可推出DC=CG,从而不难求得DF=EF,根据三角形中位线定理可得到CF=
1
2
GE.
(2)根据已知可求得AC与CF的长,由第一问可求得CF的长,再根据平行四边形的性质可求得BG的长,从而不难求得BE的长.
解答:精英家教网(1)证明:延长DC交BE于点G.
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵AC∥BE,
∴四边形ABGC是平行四边形,
∴AB=CG,
∴DC=CG,
∵AC∥BE,
∴DF=EF;

(2)解:∵CF=
2
5
AC,AD⊥DE,AC⊥DC,DC=
10

∴CD2=AC×CF,即10=AC×
2
5
AC,
解得AC=5,CF=2,
 由(1)可知CF=
1
2
GE,
∴GE=4,
∵四边形ABGC是平行四边形,
∴AC=BG=5,
∴BE=BG+GE=5+4=9,
故BE的长为9.
点评:此题主要考查学生对平行四边形的性质及三角形中位线定理等知识的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,ABCD为平行四边形,以BC为直径的⊙O经过点A,∠D=60°,BC=2,一动点P在AD上移动,过点P作直线AB的垂线,分别交直线AB、CD于E、F,设点O到EF的距离为t,若B、P、F三点能构成三角形,设此时△BPF的面积为S.
(1)计算平行四边形ABCD的面积;
(2)求S关于t的函数关系式,并写出自变量t的取值范围;
(3)△BPF的面积存在最大值吗?若存在,请求出这个最大值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC⊥EG.

查看答案和解析>>

科目:初中数学 来源:2011—2012学年山东潍坊八年级下期末模拟数学试卷(带解析) 题型:解答题

如图,ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.

(1)求证:EF=DF;
(2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的长.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东潍坊八年级下期末模拟数学试卷(解析版) 题型:解答题

如图,ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.

(1)求证:EF=DF;

(2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的长.

 

查看答案和解析>>

同步练习册答案