精英家教网 > 初中数学 > 题目详情
已知如图1,线段AB、CD相交于O,连接AD、CB,我们把形如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:

(1)在图1中,请写出∠A、∠B、∠C、∠D之间的数量关系,并说明理由;
(2)仔细观察,在图2中“8字形”的个数
6
6
个;
(3)在图2中,若∠D=46°,∠B=30°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)的结论,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系:
2∠P=∠B+∠D
2∠P=∠B+∠D
.(直接写出结论即可)
(5)如图3所示,求∠A+∠B+∠C+∠D+∠E+∠F=
360°
360°
分析:(1)利用三角形的内角和定理表示出∠AOD与∠BOC,再根据对顶角相等可得∠AOD=∠BOC,然后整理即可得解;
(2)根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;
(3)根据(1)的关系式求出∠OCB-∠OAD,再根据角平分线的定义求出∠DAM-∠PCM,然后利用“8字形”的关系式列式整理即可得解;
(4)根据“8字形”用∠B、∠D表示出∠OCB-∠OAD,再用∠D、∠P表示出∠DAM-∠PCM,然后根据角平分线的定义可得∠DAM-∠PCM=
1
2
(∠OCB-∠OAD),然后整理即可得证;
(5)连接AD,根据四边形的内角和等于360°可得∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”的熟练关系可得∠E+∠F=∠EDA+∠FAD,然后即可得解.
解答:解:(1)在△AOD中,∠AOD=180°-∠A-∠D,
在△BOC中,∠BOC=180°-∠B-∠C,
∵∠AOD=∠BOC(对顶角相等),
∴180°-∠A-∠D=180°-∠B-∠C,
∴∠A+∠D=∠B+∠C;

(2)交点有点M、N各有1个,交点O有4个,
所以,“8字形”图形共有6个;

(3)∵∠D=46°,∠B=30°,
∴∠OAD+46°=∠OCB+30°,
∴∠OCB-∠OAD=16°,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=
1
2
∠OAD,∠PCM=
1
2
∠OCB,
又∵∠DAM+∠D=∠PCM+∠P,
∴∠P=∠DAM+∠D-∠PCM=
1
2
(∠OAD-∠OCB)+∠D=
1
2
×(-16°)+46°=38°;

(4)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
所以,∠OCB-∠OAD=∠D-∠B,∠PCM-∠DAM=∠D-∠P,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=
1
2
∠OAD,∠PCM=
1
2
∠OCB,
1
2
(∠D-∠B)=∠D-∠P,
整理得,2∠P=∠B+∠D;

(5)如图,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,
根据“8字形”数量关系,∠E+∠F=∠EDA+∠FAD,
所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.
点评:本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
精英家教网
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:
 

(2)仔细观察,在图2中“8字形”的个数:
 
个;
(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.
试解答下列问题:
(1)在图1中,若∠A+∠D=80°,则∠B+∠C=
80°
80°
;仔细观察,在图2中“8字形”的个数:
6
6
个;
(2)在图2中,若∠DAO=50°,∠OCB=40°,∠P=35°,试求∠D的度数;
(3)在图2中,若设∠D=x°,∠B=y°,其它条件不变,试求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:
∠A+∠D=∠C+∠B
∠A+∠D=∠C+∠B

(2)仔细观察,在图2中“8字形”的个数:
6
6
个;
(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;

查看答案和解析>>

科目:初中数学 来源:2014届浙江绍兴杨汛桥中学七年级下学期期中考试数学试卷(解析版) 题型:解答题

已知如图1,线段AB、CD相交于点O,连结AD、CB,我们把形如图1的图形称之为“8字形”. 那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥聪明才智,解决以下问题:

1.在图1中,请写出∠A、∠B、∠C、∠D之间的数量关系,并说明理由;

2.仔细观察,在图2中“8”字形”的个数       个;

3.在图2中,若∠D=400,∠B=360,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;

4.如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)。

 

查看答案和解析>>

同步练习册答案