精英家教网 > 初中数学 > 题目详情
12.分解因式:a2(x-y)+b2(y-x).

分析 根据提公因式,平方差公式,可得答案.

解答 解:a2(x-y)+b2(y-x)
=(x-y)(a2-b2
=(x-y)(a+b)(a-b).

点评 本题考查了因式分解,利用提公因式、平方差公式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.已知|a|=5,|b|=2.
(1)若a<0,b>0,求3a-2b的值;
(2)若a>0,b<0,|c-2|=1,求2abc+|b-c|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.探究题:
$\sqrt{{3}^{2}}$=3,$\sqrt{0.{5}^{2}}$=0.5,$\sqrt{(-6)^{2}}$=6,$\sqrt{(-\frac{3}{4})^{2}}$=$\frac{3}{4}$,$\sqrt{{0}^{2}}$=0.
根据计算结果,回答:
(1)$\sqrt{{a}^{2}}$一定等于a吗?如果不是,那么$\sqrt{{a}^{2}}$=|a|;
(2)利用你总结的规律,计算:
①若x<2,则$\sqrt{(x-2)^{2}}$=2-x;
②$\sqrt{(3.14-π)^{2}}$=π-3.14.
(3)若a,b,c为三角形的三边长,化简:$\sqrt{(a+b-c)^{2}}$+$\sqrt{(b-c-a)^{2}}$+$\sqrt{(b+c-a)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,长方形纸片CD沿MN折叠(M,N在AD、BC上),AD∥BC,C′,D′为C、D的对称点,C′N交AD于E.
(1)若∠1=62°,则∠2=56°;
(2)试判断△EMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.大学毕业生小王相应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降,其中x为整数),每月饰品销量为y(件),月利润为w(元).
(1)直接写出y与x之间的函数关系式;
(2)如何确定销售价格才能使月利润最大?求最大月利润?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某农户2014年承包荒山若干亩,改造后,种果树2000棵,总投资7800元,2015年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用含a、b表示两种方式出售水果的收入;
(2)若a=1.3,b=1.1,且两种出售水果方式都在相同时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题.
(1)写出方程ax2+bx+c=0的根;
(2)写出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k无实数根,写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:
(1)x2+2x=2x+1
(2)(2y+1)2+3(2y+1)+2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知33x+1•53x+1=152x+4,求x的值.

查看答案和解析>>

同步练习册答案