精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.
(1)当n=1时,如果a=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.
①试求当n=3时a的值;
②直接写出a关于n的关系式.
精英家教网
分析:(1)根据已知得到抛物线对称轴为直线x=
1
2
,代入即可求出b;
(2)设所求抛物线解析式为y=ax2+bx+1,由对称性可知抛物线经过点B(2,1)和点M(
1
2
,2),把B、M的坐标代入得到方程组
1=4a+2b+1
2=
1
4
a+
1
2
b+1
,求出a、b的值即可得到抛物线解析式;
(3)①当n=3时,OC=1,BC=3,设所求抛物线解析式为y=ax2+bx,过C作CD⊥OB于点D,则Rt△OCD∽Rt△OBC,得出
OD
CD
=
OC
BC
=
1
3
,设OD=t,则CD=3t,根据勾股定理OD2+CD2=OC2,求出t,得出C的坐标,把B、C坐标代入抛物线解析式即可得到方程组,求出a即可;
②根据(1)、(2)①总结得到答案.
解答:解:(1)∵抛物线过矩形顶点B、C,其中C(0,1),B(n,1)
∴当n=1时,抛物线对称轴为直线x=
1
2

-
b
2a
=
1
2

∵a=-1,
∴b=1,
答:b的值是1.

(2)设所求抛物线解析式为y=ax2+bx+1,
由对称性可知抛物线经过点B(2,1)和点M(
1
2
,2),
1=4a+2b+1
2=
1
4
a+
1
2
b+1

解得
a=-
4
3
b=
8
3
.

∴所求抛物线解析式为y=-
4
3
x2+
8
3
x+1

答:此时抛物线的解析式是y=-
4
3
x2+
8
3
x+1


(3)①当n=3时,OC=1,BC=3,
设所求抛物线解析式为y=ax2+bx,
过C作CD⊥OB于点D,
精英家教网
则Rt△OCD∽Rt△OBC,
OD
CD
=
OC
BC
=
1
3

设OD=t,则CD=3t,
∵OD2+CD2=OC2
∴(3t)2+t2=12
t=
1
10
=
10
10

∴C(
10
10
3
10
10
),
又∵B(
10
,0),
∴把B、C坐标代入抛物线解析式,得
0=10a+
10
b
3
10
10
=
1
10
a+
10
10
b

解得:a=-
10
3

答:a的值是-
10
3


②答:a关于n的关系式是a=-
n2+1
n
点评:本题主要考查相似三角形的性质和判定,正方形的性质,用待定系数法求二次函数的解析式,解二元一次方程组,勾股定理等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,题型较好综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案