精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).

(1)求抛物线的解析式及A,B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.

解:(1)由题意,设抛物线的解析式为(a≠0)
∵抛物线经过(0,2)∴,解得:
∴抛物线的解析式为,即:
令y=0时,,解得:x=2或x=6。
∴A(2,0),B(6,0)。
(2)存在。
如图1,由(1)知:抛物线的对称轴l为x=4,

因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小。
∵B(6,0),C(0,2),∴OB=6,OC=2。∴BC=2
∴AP+CP=BC=2
∴AP+CP的最小值为2
(3)如图2,连接ME,

∵CE是⊙M的切线,∴ME⊥CE,∠CEM=90°。
由题意,得OC=ME=2,∠ODC=∠MDE,
∵在△COD与△MED中,
∴△COD≌△MED(AAS)。∴OD=DE,DC=DM。
设OD=x,则CD=DM=OM﹣OD=4﹣x,
∵在Rt△COD中,OD2+OC2=CD2,∴,解得x=
∴D(,0)。
设直线CE的解析式为y=kx+b,
∵直线CE过C(0,2),D(,0)两点,
,解得:
∴直线CE的解析式为

解析试题分析:(1)利用顶点式求得二次函数的解析式后令其等于0后求得x的值即为与x轴交点坐标的横坐标。
(2)根据轴对称的性质,线段BC的长即为AP+CP的最小值。
(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在Rt△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

先阅读以下材料,然后解答问题:
材料:将二次函数的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)。
解:在抛物线上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到,3),再向下平移2个单位得到,1);点B向左平移1个单位得到(0,4),再向下平移2个单位得到(0,2)。
设平移后的抛物线的解析式为
则点,1),(0,2)在抛物线上。
可得:,解得:
所以平移后的抛物线的解析式为:
根据以上信息解答下列问题:
将直线向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)请直接写出点D的坐标:     
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.

(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.

(1)求图象F所表示的抛物线的解析式:
(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).

(1)若M(﹣2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川资阳12分)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).

(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.

(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,二次函数(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.

(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

同步练习册答案