精英家教网 > 初中数学 > 题目详情
精英家教网梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O的切线EF交BC于F,求证:
(1)EF⊥BC;
(2)BF•BC=BE•AE.
分析:(1)根据已知利用切线的性质可得到∠BEF+∠B=90°,即EF⊥BC;
(2)利用两组角对应相等的两个三角形相似得到△ADE∽△BEF,再根据相似三角形的对应边成比例和AD=BC,即可得到BF•BC=BE•AE.
解答:精英家教网证明:(1)连接OE,
∵∠DEF+∠DEO=90°,∠ADE+∠OEA=90°,
∴∠DEF=∠OEA.
∵OA=OE,AD=BC,
∴∠OEA=∠A=∠B.
∴∠A=∠B=∠DEF.
∵∠DEF+∠BEF=90°,
∴∠BEF+∠B=90°.
∴EF⊥BC;

(2)∵∠A=∠B,∠AED=∠BFE=90°,
∴△ADE∽△BEF.
AD
BE
=
AE
BF

∵AD=BC,
BC
BE
=
AE
BF

∴BF•BC=BE•AE.
点评:此题考查了相似三角形的性质与判定,切线的性质等知识及其运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在等腰梯形ABCD中,AB∥CD,AB<CD,AB=10,BC=3.
(1)如果M为AB上一点,且满足∠DMC=∠A,求AM的长;
(2)如果点M在AB边上移动(点M与A,B不重合),且满足∠DMN=∠A,MN交BC延长线于N,设AM=x,CN=y,求y关于x的函数解析式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰梯形ABCD中,AB∥DC,∠A=60°,AD=DC=10,点E,F分别在AD,BC上,且AE=4,BF=x,设四边形DEFC的面积为y,则y关于x的函数关系式是
 
(不必写自变量的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

5、梯形ABCD中,AB∥为AD中点,S△BEC=2,则梯形ABCD的面积是
4

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,等腰梯形ABCD中,AB∥DC,AD=AB=BC=6,且∠D=60°,则DC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中,AB∥CD,∠ABC=90°,CD=1.
(1)若BC=3,AD=AB,求∠A的余弦值;
(2)连接BD,若△ADB与△BCD相似,设cotA=x,AB=y,求y关于x的函数关系式.

查看答案和解析>>

同步练习册答案