精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是   
【答案】分析:先根据⊙O的直径CD=5cm求出⊙O的半径,再根据OM:OD=3:5求出OM的长,连接OA,在Rt△OAM中利用勾股定理即可求出AM的长,进而求出AB的长.
解答:解:∵⊙O的直径CD=5cm,
∴OD=OC=CD=×5=cm,
∵OM:OD=3:5,
∴OM=cm,
连接OA,
∵AB⊥CD,
∴AB=2AM,
在Rt△OAM中,
OA2=OM2+AM2,即(2=(2+AM2,解得AM=2cm.
∴AB=2AM=2×2=4cm.
故答案为:4cm.
点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于(  )
A、80°B、50°C、40°D、20°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径CD过弦EF的中点G,∠OEF=34°,则∠DCF的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径CD过弦EF的中点G,∠EOG=60°,则∠DCF的度数为
30°
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江都市模拟)如图,⊙O的直径CD⊥EF,∠OEG=30°,则∠DCF=
30
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径CD过弦AB的中点M,∠ACD=28°,则∠B=
 
度.

查看答案和解析>>

同步练习册答案